43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.

          Related collections

          Most cited references349

          • Record: found
          • Abstract: found
          • Article: not found

          T-helper type 2-driven inflammation defines major subphenotypes of asthma.

          T-helper type 2 (Th2) inflammation, mediated by IL-4, IL-5, and IL-13, is considered the central molecular mechanism underlying asthma, and Th2 cytokines are emerging therapeutic targets. However, clinical studies increasingly suggest that asthma is heterogeneous. To determine whether this clinical heterogeneity reflects heterogeneity in underlying molecular mechanisms related to Th2 inflammation. Using microarray and polymerase chain reaction analyses of airway epithelial brushings from 42 patients with mild-to-moderate asthma and 28 healthy control subjects, we classified subjects with asthma based on high or low expression of IL-13-inducible genes. We then validated this classification and investigated its clinical implications through analyses of cytokine expression in bronchial biopsies, markers of inflammation and remodeling, responsiveness to inhaled corticosteroids, and reproducibility on repeat examination. Gene expression analyses identified two evenly sized and distinct subgroups, "Th2-high" and "Th2-low" asthma (the latter indistinguishable from control subjects). These subgroups differed significantly in expression of IL-5 and IL-13 in bronchial biopsies and in airway hyperresponsiveness, serum IgE, blood and airway eosinophilia, subepithelial fibrosis, and airway mucin gene expression (all P < 0.03). The lung function improvements expected with inhaled corticosteroids were restricted to Th2-high asthma, and Th2 markers were reproducible on repeat evaluation. Asthma can be divided into at least two distinct molecular phenotypes defined by degree of Th2 inflammation. Th2 cytokines are likely to be a relevant therapeutic target in only a subset of patients with asthma. Furthermore, current models do not adequately explain non-Th2-driven asthma, which represents a significant proportion of patients and responds poorly to current therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Swine as models in biomedical research and toxicology testing.

            Swine are considered to be one of the major animal species used in translational research, surgical models, and procedural training and are increasingly being used as an alternative to the dog or monkey as the choice of nonrodent species in preclinical toxicologic testing of pharmaceuticals. There are unique advantages to the use of swine in this setting given that they share with humans similar anatomic and physiologic characteristics involving the cardiovascular, urinary, integumentary, and digestive systems. However, the investigator needs to be familiar with important anatomic, histopathologic, and clinicopathologic features of the laboratory pig and minipig in order to put background lesions or xenobiotically induced toxicologic changes in their proper perspective and also needs to consider specific anatomic differences when using the pig as a surgical model. Ethical considerations, as well as the existence of significant amounts of background data, from a regulatory perspective, provide further support for the use of this species in experimental or pharmaceutical research studies. It is likely that pigs and minipigs will become an increasingly important animal model for research and pharmaceutical development applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms for copper acquisition, distribution and regulation.

              Copper (Cu) is a redox-active metal ion essential for most aerobic organisms. Cu serves as a catalytic and structural cofactor for enzymes that function in energy generation, iron acquisition, oxygen transport, cellular metabolism, peptide hormone maturation, blood clotting, signal transduction and a host of other processes. The inability to control Cu balance is associated with genetic diseases of overload and deficiency and has recently been tied to neurodegenerative disorders and fungal virulence. The essential nature of Cu, the existence of human genetic disorders of Cu metabolism and the potential impact of Cu deposition in the environment have been driving forces for detailed investigations in microbial and eukaryotic model systems. Here we review recent advances in the identification and function of cellular and systemic molecules that drive Cu accumulation, distribution and sensing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                13 August 2020
                2020
                : 8
                : 972
                Affiliations
                [1] 1Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna , Vienna, Austria
                [2] 2Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon) , Zaragoza, Spain
                [3] 3Department of Veterinary Medicine, Università degli Studi di Milano , Milan, Italy
                [4] 4Department of Comparative Biomedicine and Food Science, University of Padua , Padua, Italy
                [5] 5Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna , Vienna, Austria
                [6] 6Department of Clinical Sciences and Services, Royal Veterinary College , Hertfordshire, United Kingdom
                [7] 7Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, Netherlands
                Author notes

                Edited by: Dimitrios I. Zeugolis, National University of Ireland Galway, Ireland

                Reviewed by: Peter Pivonka, Queensland University of Technology, Australia; Janos Kanczler, University of Southampton, United Kingdom

                *Correspondence: Iris Ribitsch, iris.ribitsch@ 123456vetmeduni.ac.at

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.00972
                7438731
                32903631
                2073a8e7-ce8d-41fb-b39b-044b3f9fd251
                Copyright © 2020 Ribitsch, Baptista, Lange-Consiglio, Melotti, Patruno, Jenner, Schnabl-Feichter, Dutton, Connolly, van Steenbeek, Dudhia and Penning.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 February 2020
                : 27 July 2020
                Page count
                Figures: 1, Tables: 5, Equations: 0, References: 396, Pages: 28, Words: 0
                Categories
                Bioengineering and Biotechnology
                Review

                large animal models,sheep,pig,horse,dog,regenerative medicine,tissue engineering,naturally occurring disease

                Comments

                Comment on this article