36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1 −/− and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1 −/− and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

            TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The less harmful cigarette: a controversial issue. a tribute to Ernst L. Wynder.

              The dose-response relationship between number of cigarettes smoked and risk for lung cancer was established in 1950 by epidemiological studies. Laboratory assays with tobacco tar on mouse skin and smoke inhalation experiments with hamsters provided further evidence for this relationship. In cigarette smoke, among 4800 identified compounds, 69 are carcinogens, and several are tumor promoters or cocarcinogens. The major toxic agents are nicotine, carbon monoxide, hydrogen cyanide, nitrogen oxides, some volatile aldehydes, some alkenes, and some aromatic hydrocarbons. Public health information and education have led to a reduction of cigarette smokers among U.S. adults from 40 to 25%. However, in high school students, smoking increased to 35% and in adults with less than a high school education it remains high at 33.3%. Intervention studies were augmented with attempts of risk reduction by changing the tobacco composition and makeup of cigarettes. This led to cigarettes that, according to the FTC, reduced the tar and nicotine yields from an average of 37 and 2.7 mg to 12 and 0.85 mg. The anticipated reduction of mortality rates from chronic diseases among cigarette smokers did not occur, primarily, because of a major adjustment in smoking intensity and depth of inhalation by the habitual smokers. It is, therefore, imperative that smoking control efforts are intensified and that, short of banning cigarette sales, cigarettes delivering smoke with the lowest potential for toxicity, addiction, and carcinogenicity are declared a matter of public health policy.
                Bookmark

                Author and article information

                Journal
                Am J Physiol Lung Cell Mol Physiol
                Am. J. Physiol. Lung Cell Mol. Physiol
                ajplung
                ajplung
                AJPLUNG
                American Journal of Physiology - Lung Cellular and Molecular Physiology
                American Physiological Society (Bethesda, MD )
                1040-0605
                1522-1504
                21 August 2015
                15 October 2015
                21 August 2015
                : 309
                : 8
                : L812-L820
                Affiliations
                [1] 1Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; and
                [2] 2Altria Client Services Inc., Richmond, Virginia
                Author notes
                Address for reprint requests and other correspondence: P. W. Reeh, Dept. of Physiology and Pathophysiology, Friedrich-Alexander-Univ. of Erlangen-Nürnberg, Universitaetsstrasse 17, d, -91054 Erlangen, Germany (e-mail: peter.reeh@ 123456fau.de ).
                Article
                L-00164-2015
                10.1152/ajplung.00164.2015
                4609941
                26472811
                2052292d-6442-4ad0-8cb5-48b1eaf56d7c
                Copyright © 2015 the American Physiological Society

                Licensed under Creative Commons Attribution CC-BY 3.0: © the American Physiological Society.

                History
                : 26 May 2015
                : 16 August 2015
                Categories
                Call for Papers
                Ion Channels and Transporters in Lung Function and Disease

                Anatomy & Physiology
                particulate matter,gas phase,camphor,mecamylamine
                Anatomy & Physiology
                particulate matter, gas phase, camphor, mecamylamine

                Comments

                Comment on this article