69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins

      , ,
      Journal of Molecular Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

          Predictions of the secondary structure of T4 phage lysozyme, made by a number of investigators on the basis of the amino acid sequence, are compared with the structure of the protein determined experimentally by X-ray crystallography. Within the amino terminal half of the molecule the locations of helices predicted by a number of methods agree moderately well with the observed structure, however within the carboxyl half of the molecule the overall agreement is poor. For eleven different helix predictions, the coefficients giving the correlation between prediction and observation range from 0.14 to 0.42. The accuracy of the predictions for both beta-sheet regions and for turns are generally lower than for the helices, and in a number of instances the agreement between prediction and observation is no better than would be expected for a random selection of residues. The structural predictions for T4 phage lysozyme are much less successful than was the case for adenylate kinase (Schulz et al. (1974) Nature 250, 140-142). No one method of prediction is clearly superior to all others, and although empirical predictions based on larger numbers of known protein structure tend to be more accurate than those based on a limited sample, the improvement in accuracy is not dramatic, suggesting that the accuracy of current empirical predictive methods will not be substantially increased simply by the inclusion of more data from additional protein structure determinations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Prediction of protein conformation.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of helical wheels to represent the structures of proteins and to identify segments with helical potential.

              The three-dimensional structures of alpha-helices can be represented by two-dimensional projections which we call helical wheels. Initially, the wheels were employed as graphical restatements of the known structures determined by Kendrew, Perutz, Watson, and their colleagues at the University of Cambridge and by Phillips and his coworkers at The Royal Institution. The characteristics of the helices, discussed by Perutz et al. (1965), and Blake et al. (1965), can be readily visualized by examination of these wheels. For example, the projections for most helical segments of myoglobin, hemoglobin, and lysozyme have distinctive hydrophobic arcs. Moreover, the hydrophobic residues tend to be clustered in the n +/- 3, n, n +/- 4 positions of adjacent helical turns. Such hydrophobic arcs are not observed when the sequences of nonhelical segments are plotted on the wheels. Since the features of these projections are also distinctive, however, the wheels can be used to divide sequences into segments with either helical or nonhelical potential. The sequences of insulin, cytochrome c, ribonuclease A, chymotrypsinogen A, tobacco mosaic virus protein, and human growth hormone were chosen for application of the wheels for this purpose.
                Bookmark

                Author and article information

                Journal
                Journal of Molecular Biology
                Journal of Molecular Biology
                Elsevier BV
                00222836
                March 1978
                March 1978
                : 120
                : 1
                : 97-120
                Article
                10.1016/0022-2836(78)90297-8
                642007
                20472593-e1a1-43c2-af58-e46e7119e5fd
                © 1978

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article