Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alkyl Carbon-Carbon Bond Formation by Nickel/Photoredox Cross-Coupling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: not found
          • Article: not found

          Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organic Photoredox Catalysis.

            In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual Catalysis Strategies in Photochemical Synthesis

              The interaction between an electronically excited photocatalyst and an organic molecule can result in the genertion of a diverse array of reactive intermediates that can be manipulated in a variety of ways to result in synthetically useful bond constructions. This Review summarizes dual-catalyst strategies that have been applied to synthetic photochemistry. Mechanistically distinct modes of photocatalysis are discussed, including photoinduced electron transfer, hydrogen atom transfer, and energy transfer. We focus upon the cooperative interactions of photocatalysts with redox mediators, Lewis and Brønsted acids, organocatalysts, enzymes, and transition metal complexes.
                Bookmark

                Author and article information

                Journal
                ANIE
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                May 06 2019
                May 06 2019
                February 27 2019
                : 58
                : 19
                : 6152-6163
                Affiliations
                [1 ]Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34 Street Philadelphia PA 19104-6323 USA
                Article
                10.1002/anie.201809431
                30291664
                2015367c-4fb1-4f78-8fa0-a0e778aaa37b
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article