2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Profound Influence of Lipid Composition on the Catalysis of the Drug Target NADH Type II Oxidoreductase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipids play a pivotal role in cellular respiration, providing the natural environment in which an oxidoreductase interacts with the quinone pool. To date, it is generally accepted that negatively charged lipids play a major role in the activity of quinone oxidoreductases. By changing lipid compositions when assaying a type II NADH:quinone oxidoreductase, we demonstrate that phosphatidylethanolamine has an essential role in substrate binding and catalysis. We also reveal the importance of acyl chain composition, specifically c14:0, on membrane-bound quinone-mediated catalysis. This demonstrates that oxidoreductase lipid specificity is more diverse than originally thought and that the lipid environment plays an important role in the physiological catalysis of membrane-bound oxidoreductases.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive map of molecular drug targets

          The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile.

            Nonbilayer lipids can be defined as cone-shaped lipids with a preference for nonbilayer structures with a negative curvature, such as the hexagonal phase. All membranes contain these lipids in large amounts. Yet, the lipids in biological membranes are organized in a bilayer. This leads to the question: what is the physiological role of nonbilayer lipids? Different models are discussed in this review, with a focus on the lateral pressure profile within the membrane. Based on this lateral pressure model, predictions can be made for the effect of nonbilayer lipids on peripheral and integral membrane proteins. Recent data on the catalytic domain of Leader Peptidase and the potassium channel KcsA are discussed in relation to these predictions and in relation to the different models on the function of nonbilayer lipids. The data suggest a general mechanism for the interaction between nonbilayer lipids and membrane proteins via the membrane lateral pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wild-type Escherichia coli cells regulate the membrane lipid composition in a "window" between gel and non-lamellar structures.

              Escherichia coli strain K12 was grown at 17, 27, and 37 degrees C. The acyl chain composition of the membrane lipids varied with the growth temperature; the fraction of cis-vaccenoyl chains decreased, and the fraction of palmitoyl chains increased, when the growth temperature was increased. However, the polar head group composition did not change significantly. The equilibria between lamellar and reversed non-lamellar phases of lipids extracted from the inner membrane (IM), and from both the membranes (IOM), were studied with NMR and x-ray diffraction. At temperatures above the growth temperature the lipid extracts formed a reversed hexagonal phase, or a bicontinuous cubic phase, depending on the degree of hydration of the lipids. It was observed that: 1) at equal elevations above the growth temperature, IM lipid extracts, as well as IOM lipid extracts, have a nearly equal ability to form non-lamellar phases; 2) IM extracts have a stronger tendency than IOM extracts to form non-lamellar phases; 3) non-lamellar phases are formed under conditions that are relatively close to the physiological ones; the membrane lipid monolayers are thus "frustrated"; and 4) as a consequence of the change of the acyl chain structures, the temperature for the lamellar gel to liquid crystalline phase transition is changed simultaneously, and in the same direction, as the temperature for the lamellar to non-lamellar phase transition. With a too large fraction of saturated acyl chains the membrane lipids enter a gel state, and with a too large fraction of unsaturated acyl chains the lipids transform to non-lamellar phases. It is thus concluded that the regulation of the acyl chain composition in wild-type cells of E. coli is necessary for the organism to be able to grow in a "window" between a lamellar gel phase and reversed non-lamellar phases.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Membranes (Basel)
                Membranes (Basel)
                membranes
                Membranes
                MDPI
                2077-0375
                17 May 2021
                May 2021
                : 11
                : 5
                : 363
                Affiliations
                Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; A.GodoyHernandez@ 123456tudelft.nl
                Author notes
                Author information
                https://orcid.org/0000-0001-6614-4494
                Article
                membranes-11-00363
                10.3390/membranes11050363
                8156991
                34067848
                1fe523d6-55c6-4fb1-b781-1433dbf825ad
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 11 April 2021
                : 12 May 2021
                Categories
                Article

                type ii nadh:quinone oxidoreductase,lipids,acyl chain,biomimetic membrane

                Comments

                Comment on this article