Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Closer Look at the Cellular and Molecular Components of the Deep/Muscular Fasciae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fascia can be defined as a dynamic highly complex connective tissue network composed of different types of cells embedded in the extracellular matrix and nervous fibers: each component plays a specific role in the fascial system changing and responding to stimuli in different ways. This review intends to discuss the various components of the fascia and their specific roles; this will be carried out in the effort to shed light on the mechanisms by which they affect the entire network and all body systems. A clear understanding of fascial anatomy from a microscopic viewpoint can further elucidate its physiological and pathological characteristics and facilitate the identification of appropriate treatment strategies.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis.

          Rheumatoid arthritis (RA) remains a significant unmet medical need despite significant therapeutic advances. The pathogenesis of RA is complex and includes many cell types, including T cells, B cells, and macrophages. Fibroblast-like synoviocytes (FLS) in the synovial intimal lining also play a key role by producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction. Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage. Recent advances in understanding the biology of FLS, including their regulation regulate innate immune responses and activation of intracellular signaling mechanisms that control their behavior, provide novel insights into disease mechanisms. New agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular matrix structure.

            Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the endocannabinoid system: to enhance or reduce?

              As our understanding of the endocannabinoids improves, so does the awareness of their complexity. During pathological states, the levels of these mediators in tissues change, and their effects vary from those of protective endogenous compounds to those of dysregulated signals. These observations led to the discovery of compounds that either prolong the lifespan of endocannabinoids or tone down their action for the potential future treatment of pain, affective and neurodegenerative disorders, gastrointestinal inflammation, obesity and metabolic dysfunctions, cardiovascular conditions and liver diseases. When moving to the clinic, however, the pleiotropic nature of endocannabinoid functions will require careful judgement in the choice of patients and stage of the disorder for treatment.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 January 2021
                February 2021
                : 22
                : 3
                : 1411
                Affiliations
                Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; yutianfan1218@ 123456163.com (C.F.); lucia.petrelli@ 123456unipd.it (L.P.); diego.guidolin@ 123456unipd.it (D.G.); rdecaro@ 123456unipd.it (R.D.C.); carla.stecco@ 123456unipd.it (C.S.)
                Author notes
                Author information
                https://orcid.org/0000-0002-4372-7889
                https://orcid.org/0000-0002-0119-6549
                https://orcid.org/0000-0002-1129-0379
                https://orcid.org/0000-0003-2133-3552
                https://orcid.org/0000-0002-2307-0277
                https://orcid.org/0000-0002-8767-4555
                Article
                ijms-22-01411
                10.3390/ijms22031411
                7866861
                33573365
                1fa15cdf-7823-4cff-8c32-620cbb50e064
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2020
                : 27 January 2021
                Categories
                Review

                Molecular biology
                fascia,cells,extracellular matrix,nerve
                Molecular biology
                fascia, cells, extracellular matrix, nerve

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content208

                Cited by18

                Most referenced authors531