7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioprinting Technologies and Bioinks for Vascular Model Establishment

      ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinically, large diameter artery defects (diameter larger than 6 mm) can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene. There are many problems in the construction of small diameter blood vessels (diameter between 1 and 3 mm) and microvessels (diameter less than 1 mm), especially in the establishment of complex vascular models with multi-scale branched networks. Throughout history, the vascularization strategies have been divided into three major groups, including self-generated capillaries from implantation, pre-constructed vascular channels, and three-dimensional (3D) printed cell-laden hydrogels. The first group is based on the spontaneous angiogenesis behaviour of cells in the host tissues, which also lays the foundation of capillary angiogenesis in tissue engineering scaffolds. The second group is to vascularize the polymeric vessels (or scaffolds) with endothelial cells. It is hoped that the pre-constructed vessels can be connected with the vascular networks of host tissues with rapid blood perfusion. With the development of bioprinting technologies, various fabrication methods have been achieved to build hierarchical vascular networks with high-precision 3D control. In this review, the latest advances in 3D bioprinting of vascularized tissues/organs are discussed, including new printing techniques and researches on bioinks for promoting angiogenesis, especially coaxial printing, freeform reversible embedded in suspended hydrogel printing, and acoustic assisted printing technologies, and freeform reversible embedded in suspended hydrogel (flash) technology.

          Related collections

          Most cited references210

          • Record: found
          • Abstract: found
          • Article: not found

          3D bioprinting of collagen to rebuild components of the human heart

          Collagen is the primary component of the extracellular matrix in the human body. It has proved challenging to fabricate collagen scaffolds capable of replicating the structure and function of tissues and organs. We present a method to 3D-bioprint collagen using freeform reversible embedding of suspended hydrogels (FRESH) to engineer components of the human heart at various scales, from capillaries to the full organ. Control of pH-driven gelation provides 20-micrometer filament resolution, a porous microstructure that enables rapid cellular infiltration and microvascularization, and mechanical strength for fabrication and perfusion of multiscale vasculature and tri-leaflet valves. We found that FRESH 3D-bioprinted hearts accurately reproduce patient-specific anatomical structure as determined by micro–computed tomography. Cardiac ventricles printed with human cardiomyocytes showed synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            3D bioprinting for engineering complex tissues.

            Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels

              Freeform reversible embedding of suspended hydrogels enables three-dimensional printing of soft extracellular matrix biopolymers in biomimetic structures.
                Bookmark

                Author and article information

                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                January 2023
                January 03 2023
                : 24
                : 1
                : 891
                Article
                10.3390/ijms24010891
                36614332
                1f598d85-6066-468e-ba61-854542919a9d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article