3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coaxially Bioprinted Cell-Laden Tubular-Like Structure for Studying Glioma Angiogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastomas are the most frequently diagnosed and one of the most lethal primary brain tumors, and one of their key features is a dysplastic vascular network. However, because the origin of the tumor blood vessels remains controversial, an optimal preclinical tumor model must be established to elucidate the tumor angiogenesis mechanism, especially the role of tumor cells themselves in angiogenesis. Therefore, shell-glioma cell (U118)-red fluorescent protein (RFP)/core-human umbilical vein endothelial cell (HUVEC)-green fluorescent protein (GFP) hydrogel microfibers were coaxially bioprinted. U118–RFP and HUVEC–GFP cells both exhibited good proliferation in a three-dimensional (3D) microenvironment. The secretability of both vascular endothelial growth factor A and basic fibroblast growth factor was remarkably enhanced when both types of cells were cocultured in 3D models. Moreover, U118 cells promoted the vascularization of the surrounding HUVECs by secreting vascular growth factors. More importantly, U118–HUVEC-fused cells were found in U118–RFP/HUVEC–GFP hydrogel microfibers. Most importantly, our results indicated that U118 cells can not only recruit the blood vessels of the surrounding host but also directly transdifferentiate into or fuse with endothelial cells to participate in tumor angiogenesis in vivo. The coaxially bioprinted U118–RFP/HUVEC–GFP hydrogel microfiber is a model suitable for mimicking the glioma microenvironment and for investigating tumor angiogenesis.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Adult Glioma Incidence and Survival by Race or Ethnicity in the United States From 2000 to 2014

          Question Are there differences in glioma incidence and survival by race or ethnicity in the United States? Findings In this population-based analysis of 244 808 patients with glioma, non-Hispanic whites had the highest incidence and the lowest relative survival rates in most histologies. Meaning Differences in incidence and survival by race or ethnicity can inform future discovery of risk factors and reveal unaddressed health disparities. Importance Glioma is the most commonly occurring malignant brain tumor in the United States, and its incidence varies by age, sex, and race or ethnicity. Survival after brain tumor diagnosis has been shown to vary by these factors. Objective To quantify the differences in incidence and survival rates of glioma in adults by race or ethnicity. Design, Setting, and Participants This population-based study obtained incidence data from the Central Brain Tumor Registry of the United States and survival data from Surveillance, Epidemiology, and End Results registries, covering the period January 1, 2000, to December 31, 2014. Average annual age-adjusted incidence rates with 95% CIs were generated by glioma histologic groups, race, Hispanic ethnicity, sex, and age groups. One-year and 5-year relative survival rates were generated by glioma histologic groups, race, Hispanic ethnicity, and insurance status. The analysis included 244 808 patients with glioma diagnosed in adults aged 18 years or older. Data were collected from January 1, 2000, to December 31, 2014. Data analysis took place from December 11, 2017, to January 31, 2018. Results Overall, 244 808 patients with glioma were analyzed. Of these, 150 631 (61.5%) were glioblastomas, 46 002 (18.8%) were non-glioblastoma astrocytomas, 26 068 (10.7%) were oligodendroglial tumors, 8816 (3.6%) were ependymomas, and 13 291 (5.4%) were other glioma diagnoses in adults. The data set included 137 733 males (56.3%) and 107 075 (43.7%) females. There were 204 580 non-Hispanic whites (83.6%), 17 321 Hispanic whites (7.08%), 14 566 blacks (6.0%), 1070 American Indians or Alaska Natives (0.4%), and 5947 Asians or Pacific Islanders (2.4%). Incidences of glioblastoma, non-glioblastoma astrocytoma, and oligodendroglial tumors were higher among non-Hispanic whites than among Hispanic whites (30% lower overall), blacks (52% lower overall), American Indians or Alaska Natives (58% lower overall), or Asians or Pacific Islanders (52% lower overall). Most tumors were more common in males than in females across all race or ethnicity groups, with the great difference in glioblastoma where the incidence was 60% higher overall in males. Most tumors (193 329 [79.9%]) occurred in those aged 45 years or older, with differences in incidence by race or ethnicity appearing in all age groups. Survival after diagnosis of glioma of different subtypes was generally comparable among Hispanic whites, blacks, and Asians or Pacific Islanders but was lower among non-Hispanic whites for many tumor types, including glioblastoma, irrespective of treatment type. Conclusions and Relevance Incidence of glioma and 1-year and 5-year survival rates after diagnosis vary significantly by race or ethnicity, with non-Hispanic whites having higher incidence and lower survival rates compared with individuals of other racial or ethnic groups. These findings can inform future discovery of risk factors and reveal unaddressed health disparities. Using 14 years of data from the US Central Brain Tumor Registry and the Surveillance, Epidemiology, and End Results registries, this study examines the incidence and survival rates of glioma and its subtypes among 4 racial or ethnic groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy

            Patient-specific ex vivo models of human tumours that recapitulate the pathological characteristics and complex ecology of native tumours could help determine the most appropriate cancer treatment for individual patients. Here, we show that bioprinted reconstituted glioblastoma tumours consisting of patient-derived tumour cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue in a compartmentalized cancer-stroma concentric-ring structure that sustains a radial oxygen gradient, recapitulate the structural, biochemical and biophysical properties of the native tumours. We also show that the glioblastoma-on-a-chip reproduces clinically observed patient-specific resistances to treatment with concurrent chemoradiation and temozolomide, and that the model can be used to determine drug combinations associated with superior tumour killing. The patient-specific tumour-on-a-chip model might be useful for the identification of effective treatments for glioblastoma patients resistant to the standard first-line treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells.

              Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (refs 5-9). Here we show that a variable number (range 20-90%, mean 60.7%) of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium has a neoplastic origin. The vascular endothelium contained a subset of tumorigenic cells that produced highly vascularized anaplastic tumours with areas of vasculogenic mimicry in immunocompromised mice. In vitro culture of GSCs in endothelial conditions generated progeny with phenotypic and functional features of endothelial cells. Likewise, orthotopic or subcutaneous injection of GSCs in immunocompromised mice produced tumour xenografts, the vessels of which were primarily composed of human endothelial cells. Selective targeting of endothelial cells generated by GSCs in mouse xenografts resulted in tumour reduction and degeneration, indicating the functional relevance of the GSC-derived endothelial vessels. These findings describe a new mechanism for tumour vasculogenesis and may explain the presence of cancer-derived endothelial-like cells in several malignancies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                01 October 2021
                2021
                : 9
                : 761861
                Affiliations
                [ 1 ]Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
                [ 2 ]Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
                [ 3 ]Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
                [ 4 ]Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
                [ 5 ]East China Institute of Digital Medical Engineering, Shangrao, China
                [ 6 ]Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
                [ 7 ]Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen, China
                Author notes

                Edited by: Lorenzo Moroni, Maastricht University, Netherlands

                Reviewed by: Giovanni Vozzi, University of Pisa, Italy

                Sara Pedron, University of Illinois at Urbana-Champaign, United States

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                761861
                10.3389/fbioe.2021.761861
                8517394
                34660561
                11ab37fa-27cf-4f96-87ed-5df177d6fb8d
                Copyright © 2021 Wang, Li, Zhang, Long, Zhang, Xu and Niu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 August 2021
                : 21 September 2021
                Categories
                Bioengineering and Biotechnology
                Original Research

                coaxial bioprinting,glioma,angiogenesis,fused cells,transdifferentiate

                Comments

                Comment on this article