5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of blood vessels in broiler chickens with tibial dyschondroplasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tibial dyschondroplasia ( TD) is an intractable tibiotarsal bone disorder of rapid growing avian species, which leads to huge economic losses and compromised poultry welfare. However, the exact pathogenesis and treatment of TD remain largely unknown. Based on continuous research findings, we propose the TD pathogenesis hypothesis: during skeletal development of TD chickens, due to the absence of vasculature of proximal tibial growth plates ( TGP), hypertrophic chondrocytes of the TGP are unable to complete calcification in normal bone development and less dead chondrocytes in the corresponding area can be timely transported through the blood vessels. Moreover, recent studies demonstrate that the TD formation mechanism gradually tends to a large number of dead chondrocytes in the TGP region or apoptosis occur due to various factors (such as, reduction of vascular invasion and blood cells, and increased weight or mechanical force of the tibia), while the reduction of blood vessels is insufficient to remove these chondrocytes and eventually leads to the TD formation. Recognizing the possible role of the blood vessels in the incidence of TD and can propose that the improvement in vasculature might be a novel therapeutic approach for ending TD in chickens.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.

          The mammalian skeletal system harbours a hierarchical system of mesenchymal stem cells, osteoprogenitors and osteoblasts sustaining lifelong bone formation. Osteogenesis is indispensable for the homeostatic renewal of bone as well as regenerative fracture healing, but these processes frequently decline in ageing organisms, leading to loss of bone mass and increased fracture incidence. Evidence indicates that the growth of blood vessels in bone and osteogenesis are coupled, but relatively little is known about the underlying cellular and molecular mechanisms. Here we identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties. These vessels are found in specific locations, mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors and couple angiogenesis to osteogenesis. The abundance of these vessels and associated osteoprogenitors was strongly reduced in bone from aged animals, and pharmacological reversal of this decline allowed the restoration of bone mass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia-inducible factors in physiology and medicine.

            Oxygen homeostasis represents an organizing principle for understanding metazoan evolution, development, physiology, and pathobiology. The hypoxia-inducible factors (HIFs) are transcriptional activators that function as master regulators of oxygen homeostasis in all metazoan species. Rapid progress is being made in elucidating homeostatic roles of HIFs in many physiological systems, determining pathological consequences of HIF dysregulation in chronic diseases, and investigating potential targeting of HIFs for therapeutic purposes. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation.

              Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                17 December 2019
                December 2019
                17 December 2019
                : 98
                : 12
                : 6527-6532
                Affiliations
                [1]College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
                Author notes
                [1 ]Corresponding author huang.sc@ 123456henau.edu.cn
                Article
                S0032-5791(19)57960-3
                10.3382/ps/pez497
                8913930
                31433842
                1f1cab28-f390-4e1f-af24-ae6aebe9969e
                © 2019 Poultry Science Association Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 June 2019
                : 7 August 2019
                Categories
                Article

                blood vessels,bone development,chondrocyte,mechanical force,tibial dyschondroplasia

                Comments

                Comment on this article