30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next-Generation Sequencing Based Gut Resistome Profiling of Broiler Chickens Infected with Multidrug-Resistant Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Antimicrobial resistance acquired an endemic status in the Pakistan poultry sector. A cross-sectional study was designed to investigate the fecal microbiome and resistome of broiler chickens infected with multidrug-resistant Escherichia coli using next-generation sequencing. Results show the widespread presence of diverse antibiotic resistance genes, virulence-associated genes, plasmid replicon types, and dysbiotic fecal microbial communities. Results indicate that antibiotic resistance altered the fecal microbial community structure of broiler chickens. The use of next-generation sequencing in this study documents a robust and cost-effective approach to study the fecal microbiome and resistome diversities of broiler chickens.

          Abstract

          The study was designed to investigate the fecal microbiome and resistome of broiler chickens infected with multidrug-resistant (MDR) Escherichia coli ( E. coli). Fecal samples ( n = 410) from broiler chickens were collected from thirteen randomly selected sites of Khyber Pakhtunkhwa and screened for the presence of MDR E. coli. Upon initial screening, thirteen (13) MDR E. coli isolates were then subjected to shotgun metagenome next-generation sequencing (NGS). NGS based resistome analysis identified the multidrug efflux pump system-related genes at the highest prevalence (36%) followed by aminoglycoside (26.1%), tetracycline (15.9%), macrolide-lincosamide-streptogramin (9.6%), beta-lactam (6.6%), rifampin (2%), sulphonamide (1.3%), phenicol (0.91%), vancomycin (0.62%), trimethoprim (0.34%), colistin (0.30%), and quinolone (0.33%). The most abundant virulence-associated genes (VAGs) identified were iroN, iutA, iss, and iucA. NGS based taxonomic profiling at the phylum level revealed the predominance of Proteobacteria (38.9%) followed by Firmicutes (36.4%), Bacteroidetes (15.8%), and Tenericutes (8.9%). Furthermore, pathobionts such as E. coli, Salmonella enterica, Klebsiella pneumoniae, and Shigella flexneri belonging to the family Enterobacteriaceae were predominantly found. This study revealed the widespread presence of MDR genes, diverse VAGs, and a dysbiotic gut in the broiler chickens infected with MDR E. coli of Khyber Pakhtunkhwa for the first time using NGS.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host-derived nitrate boosts growth of E. coli in the inflamed gut.

              Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                09 December 2020
                December 2020
                : 10
                : 12
                : 2350
                Affiliations
                [1 ]Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; ummeafridi@ 123456gmail.com
                [2 ]Center for Genome Sciences, Rehman Medical College, Hayatabad, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
                [3 ]Executive Development Center, Sukkur Institute of Business Administration University, Sindh 65200, Pakistan
                Author notes
                [* ]Correspondence: Johar.ali1@ 123456rmi.edu.pk (J.A.); jhcbio@ 123456knu.ac.kr (J.H.C.)
                Author information
                https://orcid.org/0000-0002-2126-0317
                Article
                animals-10-02350
                10.3390/ani10122350
                7764233
                33317082
                038fb2af-3045-4e04-bcf5-5b8a9f104946
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 October 2020
                : 06 December 2020
                Categories
                Article

                broiler chickens,fecal microbiota,shotgun metagenome sequencing,dysbiosis,antibiotic resistance genes,multidrug resistance

                Comments

                Comment on this article