Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
126
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disturbed Local Auxin Homeostasis Enhances Cellular Anisotropy and Reveals Alternative Wiring of Auxin-ethylene Crosstalk in Brachypodium distachyon Seminal Roots

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene ( BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele ( Bdtar2l hypo ). Counterintuitive however, Bdtar2l hypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2l hypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/ tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.

          Author Summary

          The plant hormone auxin is pivotal for root system development. For instance, its local biosynthesis is essential for root formation and growth in the dicotyledon model Arabidopsis. Thus, increasing interference with auxin biosynthesis results in increasingly shorter roots, partly because of reduced cell elongation. In this study, we isolated a hypomorphic mutant in an auxin biosynthesis pathway enzyme in the monocotyledon model Brachypodium. Counterintuitive, this mutant displays a dramatically longer seminal root, because mature cells are thinner, more elongated and therefore more anisotropic than in wild type. Interestingly, this phenotype can be mimicked in wild type by pharmacological interference with production of a key auxin biosynthesis intermediate, but also by interference with the biosynthesis of another plant hormone, ethylene. The latter controls auxin biosynthesis in Arabidopsis roots. Surprisingly however, auxin levels in the Brachypodium mutant are elevated rather than reduced, because of a simultaneous up-regulation of the second, rate-limiting step of the pathway. Ethylene normally represses this second step, suggesting an inverted regulatory relation between the two hormones as compared to Arabidopsis. Our results point to a complex homeostatic crosstalk between auxin and ethylene in Brachypodium roots, which is fundamentally different from Arabidopsis and might be conserved in other monocotyledons.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Root Architecture and Plant Productivity.

          J. Lynch (1995)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive algorithm for quantitative real-time polymerase chain reaction.

            Quantitative real-time polymerase chain reactions (qRT-PCR) have become the method of choice for rapid, sensitive, quantitative comparison of RNA transcript abundance. Useful data from this method depend on fitting data to theoretical curves that allow computation of mRNA levels. Calculating accurate mRNA levels requires important parameters such as reaction efficiency and the fractional cycle number at threshold (CT) to be used; however, many algorithms currently in use estimate these important parameters. Here we describe an objective method for quantifying qRT-PCR results using calculations based on the kinetics of individual PCR reactions without the need of the standard curve, independent of any assumptions or subjective judgments which allow direct calculation of efficiency and CT. We use a four-parameter logistic model to fit the raw fluorescence data as a function of PCR cycles to identify the exponential phase of the reaction. Next, we use a three-parameter simple exponent model to fit the exponential phase using an iterative nonlinear regression algorithm. Within the exponential portion of the curve, our technique automatically identifies candidate regression values using the P-value of regression and then uses a weighted average to compute a final efficiency for quantification. For CT determination, we chose the first positive second derivative maximum from the logistic model. This algorithm provides an objective and noise-resistant method for quantification of qRT-PCR results that is independent of the specific equipment used to perform PCR reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development.

              Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2013
                June 2013
                20 June 2013
                : 9
                : 6
                : e1003564
                Affiliations
                [1 ]Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
                [2 ]Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
                National University of Singapore and Temasek Life Sciences Laboratory, Singapore
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DP-V CSH. Performed the experiments: DP-V KL. Analyzed the data: DP-V MS KL. Contributed reagents/materials/analysis tools: MS KL. Wrote the paper: DP-V CSH.

                Article
                PGENETICS-D-12-02421
                10.1371/journal.pgen.1003564
                3688705
                23840182
                1e4dc146-9232-40b1-a182-849528530dd9
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 September 2012
                : 30 April 2013
                Page count
                Pages: 12
                Funding
                This work was funded by Swiss National Science Foundation grant 31003A_129783 and a Herbette Foundation grant awarded to CSH, as well as internal support of the University of Lausanne for DP-V and MS. KL's contribution was supported by The Swedish Governmental Agency for Innovation Systems (Vinnova) and the Swedish Research Council (Vetenskapsrådet). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Plant Science
                Plant Evolution
                Plant Genetics
                Plant Growth and Development

                Genetics
                Genetics

                Comments

                Comment on this article