16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

          We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

            Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Auxin biosynthesis and its role in plant development.

              Yunde Zhao (2010)
              Indole-3-acetic acid (IAA), the main auxin in higher plants, has profound effects on plant growth and development. Both plants and some plant pathogens can produce IAA to modulate plant growth. Although the genes and biochemical reactions for auxin biosynthesis in some plant pathogens are well understood, elucidation of the mechanisms by which plants produce auxin has proven to be difficult. So far, no single complete pathway of de novo auxin biosynthesis in plants has been firmly established. However, recent studies have led to the discoveries of several genes in tryptophan-dependent auxin biosynthesis pathways. Recent findings have also determined that local auxin biosynthesis plays essential roles in many developmental processes including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower development. In this review, I summarize the recent advances in dissecting auxin biosynthetic pathways and how the understanding of auxin biosynthesis provides a crucial angle for analyzing the mechanisms of plant development.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 December 2019
                December 2019
                : 20
                : 24
                : 6343
                Affiliations
                [1 ]College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; caoxv618@ 123456vip.163.com (X.C.);
                [2 ]Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
                Author notes
                [* ]Correspondence: chengjialing1@ 123456yeah.net ; Tel.: +86-511-85616573
                Author information
                https://orcid.org/0000-0001-8157-7845
                Article
                ijms-20-06343
                10.3390/ijms20246343
                6941117
                31888214
                820e33f2-c0f7-4b7f-adfa-a0a5e318df1b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 November 2019
                : 12 December 2019
                Categories
                Review

                Molecular biology
                auxin,local auxin biosynthesis,yucca,development,stress response
                Molecular biology
                auxin, local auxin biosynthesis, yucca, development, stress response

                Comments

                Comment on this article