13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe xC y > 160 mg/m 3, but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon nanotubes: present and future commercial applications.

          Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis.

            Many routes have been developed for the synthesis of carbon nanotubes, but their assembly into continuous fibers has been achieved only through postprocessing methods. We spun fibers and ribbons of carbon nanotubes directly from the chemical vapor deposition (CVD) synthesis zone of a furnace using a liquid source of carbon and an iron nanocatalyst. This process was realized through the appropriate choice of reactants, control of the reaction conditions, and continuous withdrawal of the product with a rotating spindle used in various geometries. This direct spinning from a CVD reaction zone is extendable to other types of fiber and to the spin coating of rotating objects in general.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nucleation and growth of nanoparticles in the atmosphere.

                Bookmark

                Author and article information

                Contributors
                a.boies@eng.cam.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 November 2017
                6 November 2017
                2017
                : 7
                : 14519
                Affiliations
                [1 ]ISNI 0000000121885934, GRID grid.5335.0, University of Cambridge, Department of Engineering, ; Cambridge, CB2 1PZ United Kingdom
                [2 ]Q-Flo Limited, BioCity, Pennyfoot Street, Nottingham, NG1 1GF United Kingdom
                Author information
                http://orcid.org/0000-0002-1725-3683
                Article
                14775
                10.1038/s41598-017-14775-1
                5673953
                29109427
                1e269128-e444-4a8b-a444-66480426a913
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 July 2017
                : 3 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article