11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nonspecific CD4(+) T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8(+) CTL responses and long-term T cell memory.

      Journal of Leukocyte Biology
      Animals, Antigens, CD40, immunology, Antigens, CD80, Antigens, Neoplasm, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cancer Vaccines, therapeutic use, Cell Line, Tumor, Cell Proliferation, drug effects, Concanavalin A, pharmacology, Dendritic Cells, Histocompatibility Antigens Class I, Humans, Immunologic Memory, Melanoma, prevention & control, Mice, Mice, Knockout, Mitogens, Ovalbumin, Peptides, Signal Transduction, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cell (DC) and DC-derived exosomes (EXO) have been used extensively for tumor vaccination. However, its therapeutic efficiency is limited to only production of prophylactic immunity against tumors. T cells can uptake DC-released EXO. However, the functional effect of transferred exosomal molecules on T cells is unclear. In this study, we demonstrated that OVA protein-pulsed DC-derived EXO (EXO(OVA)) can be taken up by Con A-stimulated, nonspecific CD4(+) T cells derived from wild-type C57BL/6 mice. The active EXO-uptaken CD4(+) T cells (aT(EXO)), expressing acquired exosomal MHC I/OVA I peptide (pMHC I) complexes and costimulatory CD40 and CD80 molecules, can act as APCs capable of stimulating OVA-specific CD8(+) T cell proliferation in vitro and in vivo and inducing efficient CD4(+) Th cell-independent CD8(+) CTL responses in vivo. The EXO(OVA)-uptaken CD4(+) aT(EXO) cell vaccine induces much more efficient CD8(+) T cell responses and immunity against challenge of OVA-transfected BL6-10 melanoma cells expressing OVA in wild-type C57BL/6 mice than EXO(OVA). The in vivo stimulatory effect of the CD4(+) aT(EXO) cell to CD8(+) T cell responses is mediated and targeted by its CD40 ligand signaling/acquired exosomal CD80 and pMHC I complexes, respectively. In addition, CD4(+) aT(EXO) vaccine stimulates a long-term, OVA-specific CD8(+) T cell memory. Therefore, the EXO(OVA)-uptaken CD4(+) T cells may represent a new, effective, EXO-based vaccine strategy in induction of immune responses against tumors and other infectious diseases.

          Related collections

          Author and article information

          Comments

          Comment on this article