3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein–ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer’s disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

          Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

            The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Structure, Function, and Evolution of Coronavirus Spike Proteins

              Fang Li (2016)
              The coronavirus spike protein is a multifunctional molecular machine that mediates coronavirus entry into host cells. It first binds to a receptor on the host cell surface through its S1 subunit and then fuses viral and host membranes through its S2 subunit. Two domains in S1 from different coronaviruses recognize a variety of host receptors, leading to viral attachment. The spike protein exists in two structurally distinct conformations, prefusion and postfusion. The transition from prefusion to postfusion conformation of the spike protein must be triggered, leading to membrane fusion. This article reviews current knowledge about the structures and functions of coronavirus spike proteins, illustrating how the two S1 domains recognize different receptors and how the spike proteins are regulated to undergo conformational transitions. I further discuss the evolution of these two critical functions of coronavirus spike proteins, receptor recognition and membrane fusion, in the context of the corresponding functions from other viruses and host cells.
                Bookmark

                Author and article information

                Contributors
                wyse@ufrgs.br
                Journal
                Neurotox Res
                Neurotox Res
                Neurotoxicity Research
                Springer US (New York )
                1029-8428
                1476-3524
                2 August 2022
                : 1-17
                Affiliations
                GRID grid.8532.c, ISNI 0000 0001 2200 7498, Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse’s Lab, Department of Biochemistry, , ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), ; Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS 90035-003 Brazil
                Article
                542
                10.1007/s12640-022-00542-2
                9343570
                35917086
                1dffce5b-f307-4481-ba75-ed87fad06cce
                © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 13 May 2022
                : 17 June 2022
                : 30 June 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Funded by: FundRef http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Funded by: FundRef http://dx.doi.org/10.13039/501100004263, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul;
                Categories
                Review Article

                Neurosciences
                molecular docking,sars-cov-2,papain-like protease,curcumin,glycyrrhizinic acid,alzheimer’s disease

                Comments

                Comment on this article