10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      As, Cr, Hg, Pb, and Cd Concentrations and Bioaccumulation in the Dugong Dugong dugon and Manatee Trichechus manatus: A Review of Body Burdens and Distribution

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The death of dozens of manatees Trichechus manatus recently in Tabasco, Mexico, has captured international attention. Speculation about possible causes include water and food contamination by metals. Although federal authorities have ruled out water chemical pollution, the cause of these deaths is still awaiting conclusive laboratory results. Present work seeks to summarize information currently available on non-essential metals and those of great toxicological relevance in Sirenia (dugongs and manatees), highlighting its body distribution, presence in blood, and its relationship with their geographical distribution, gender and age, whenever possible. This paper focuses on the five elements: As, Cr, Hg, Pb and Cd, which are commonly considered as threats for marine mammals and reported in Sirenia. Some of these metals (Cr and Cd) were thought to be related to the recent deaths in Tabasco. All five elements are accumulated by Sirenia at different levels. Metal presence is associated to their diet but does not necessarily imply adverse effects for dugongs and manatees. Toxicological aspects and the human consumption risk in case of any illegal or traditional consumption in some cultures are discussed. Important toxicological research areas that need to be addressed are highlighted.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Differences between Human Plasma and Serum Metabolite Profiles

          Background Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. Methodology/Principal Findings We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. Conclusions/Significance Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trends in meat consumption in the USA.

            To characterize the trends, distribution, potential determinants and public health implications of meat consumption within the USA. We examined temporal trends in meat consumption using food availability data from the FAO and US Department of Agriculture (USDA), and further evaluated the meat intake by type (red, white, processed) in the National Health and Nutrition Examination Surveys (NHANES) linked to the MyPyramid Equivalents Database (MPED). Overall meat consumption has continued to rise in the USA and the rest of the developed world. Despite a shift towards higher poultry consumption, red meat still represents the largest proportion of meat consumed in the USA (58 %). Twenty-two per cent of the meat consumed in the USA is processed. According to the NHANES 2003-2004, total meat intake averaged 128 g/d. The type and quantities of meat reported varied by education, race, age and gender. Given the plausible epidemiological evidence for red and processed meat intake in cancer and chronic disease risk, understanding the trends and determinants of meat consumption in the USA, where meat is consumed at more than three times the global average, should be particularly pertinent to researchers and other public health professionals aiming to reduce the global burden of chronic disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review

                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                31 January 2019
                February 2019
                : 16
                : 3
                : 404
                Affiliations
                Hydrobiology and Aquatic Pollution Laboratory, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico; alee.libertad@ 123456gmail.com (A.P.-L.); santoscordovaj@ 123456gmail.com (J.M.S.-C.)
                Author notes
                [* ]Correspondence: gabriel.nunez@ 123456ujat.mx ; Tel.: +52-993-316-0001
                Author information
                https://orcid.org/0000-0001-9217-6959
                Article
                ijerph-16-00404
                10.3390/ijerph16030404
                6388294
                30708981
                1ded2e7d-7374-42c9-9540-6c6bf588a722
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 October 2018
                : 24 January 2019
                Categories
                Review

                Public health
                sirenia,toxic metals,dugong,manatee,accumulation,body distribution
                Public health
                sirenia, toxic metals, dugong, manatee, accumulation, body distribution

                Comments

                Comment on this article