There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
High-quality cardiopulmonary resuscitation (CPR) may improve both cardiac and brain resuscitation following cardiac arrest. Compared with manual chest compression, an automated load-distributing band (LDB) chest compression device produces greater blood flow to vital organs and may improve resuscitation outcomes. To compare resuscitation outcomes following out-of-hospital cardiac arrest when an automated LDB-CPR device was added to standard emergency medical services (EMS) care with manual CPR. Multicenter, randomized trial of patients experiencing out-of-hospital cardiac arrest in the United States and Canada. The a priori primary population was patients with cardiac arrest that was presumed to be of cardiac origin and that had occurred prior to the arrival of EMS personnel. Initial study enrollment varied by site, ranging from late July to mid November 2004; all sites halted study enrollment on March 31, 2005. Standard EMS care for cardiac arrest with an LDB-CPR device (n = 554) or manual CPR (n = 517). The primary end point was survival to 4 hours after the 911 call. Secondary end points were survival to hospital discharge and neurological status among survivors. Following the first planned interim monitoring conducted by an independent data and safety monitoring board, study enrollment was terminated. No difference existed in the primary end point of survival to 4 hours between the manual CPR group and the LDB-CPR group overall (N = 1071; 29.5% vs 28.5%; P = .74) or among the primary study population (n = 767; 24.7% vs 26.4%, respectively; P = .62). However, among the primary population, survival to hospital discharge was 9.9% in the manual CPR group and 5.8% in the LDB-CPR group (P = .06, adjusted for covariates and clustering). A cerebral performance category of 1 or 2 at hospital discharge was recorded in 7.5% of patients in the manual CPR group and in 3.1% of the LDB-CPR group (P = .006). Use of an automated LDB-CPR device as implemented in this study was associated with worse neurological outcomes and a trend toward worse survival than manual CPR. Device design or implementation strategies require further evaluation. clinicaltrials.gov Identifier: NCT00120965.
Mechanical chest compression devices have been developed to facilitate continuous delivery of high-quality cardiopulmonary resuscitation (CPR). Despite promising hemodynamic data, evidence on clinical outcomes remains inconclusive. With the completion of 3 randomized controlled trials, we conduct a meta-analysis on the effect of in-field mechanical versus manual CPR on clinical outcomes after out-of-hospital cardiac arrest.
Introduction Our goal was to systematically review contemporary literature comparing the relative effectiveness of two mechanical compression devices (LUCAS and AutoPulse) to manual compression for achieving return of spontaneous circulation (ROSC) in patients undergoing cardiopulmonary resuscitation (CPR) after an out-of-hospital cardiac arrest (OHCA). Methods We searched medical databases systematically for randomized controlled trials (RCT) and observational studies published between January 1, 2000–October 1, 2020 that compared mechanical chest compression (using any device) with manual chest compression following OHCA. We only included studies in the English language that reported ROSC outcomes in adult patients in non-trauma settings to conduct random-effects metanalysis and trial sequence analysis (TSA). Multivariate meta-regression was performed using preselected covariates to account for heterogeneity. We assessed for risk of biases in randomization, allocation sequence concealment, blinding, incomplete outcome data, and selective outcome reporting. Results A total of 15 studies (n = 18474), including six RCTs, two cluster RCTs, five retrospective case-control, and two phased prospective cohort studies, were pooled for analysis. The pooled estimates’ summary effect did not indicate a significant difference (Mantel-Haenszel odds ratio = 1.16, 95% confidence interval, 0.97 to 1.39, P = 0.11, I2 = 0.83) between mechanical and manual compressions during CPR for ROSC. The TSA showed firm evidence supporting the lack of improvement in ROSC using mechanical compression devices. The Z-curves successfully crossed the TSA futility boundary for ROSC, indicating sufficient evidence to draw firm conclusions regarding these outcomes. Multivariate meta-regression demonstrated that 100% of the between-study variation could be explained by differences in average age, the proportion of females, cardiac arrests with shockable rhythms, witnessed cardiac arrest, bystander CPR, and the average time for emergency medical services (EMS) arrival in the study samples, with the latter three attaining statistical significance. Conclusion Mechanical compression devices for resuscitation in cardiac arrests are not associated with improved rates of ROSC. Their use may be more beneficial in non-ideal situations such as lack of bystander CPR, unwitnessed arrest, and delayed EMS response times. Studies done to date have enough power to render further studies on this comparison futile.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the
article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.