23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Rho guanine nucleotide exchange factor (RhoGEF) Trio promotes actin polymerization by directly activating the small GTPase Rac1. Recent studies suggest that autism spectrum disorder (ASD)-related behavioral phenotypes in animal models of ASD can be produced by dysregulation of Rac1’s control of actin polymerization at glutamatergic synapses. Here, in humans, we discover a large cluster of ASD-related de novo mutations in Trio’s Rac1 activating domain, GEF1. Our study reveals that these mutations produce either hypofunctional or hyperfunctional forms of Trio in rodent neurons in vitro. In accordance with pathological increases or decreases in glutamatergic neurotransmission observed in animal models of ASD, we find that these mutations result in either reduced synaptic AMPA receptor expression or enhanced glutamatergic synaptogenesis. Together, our findings implicate both excessive and reduced Trio activity and the resulting synaptic dysfunction in ASD-related pathogenesis, and point to the Trio-Rac1 pathway at glutamatergic synapses as a possible key point of convergence of many ASD-related genes.

          Abstract

          Trio is a RhoGEF protein that promotes actin polymerization and is implicated in the regulation of glutamatergic synapses in autism spectrum disorder (ASD). Here the authors identify a large cluster of de novo mutations in the GEF1 domain of Trio in whole-exome sequencing data from individuals with ASD, and confirm that some of these mutations lead to glutamatergic dysregulation in vitro.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A simple method for organotypic cultures of nervous tissue.

          Hippocampal slices prepared from 2-23-day-old neonates were maintained in culture at the interface between air and a culture medium. They were placed on a sterile, transparent and porous membrane and kept in petri dishes in an incubator. No plasma clot or roller drum were used. This method yields thin slices which remain 1-4 cell layers thick and are characterized by a well preserved organotypic organization. Pyramidal neurons labelled by extra- and intracellular application of horse radish peroxidase resemble by the organization and complexity of their dendritic processes those observed in situ at a comparable developmental stage. Excitatory and inhibitory synaptic potentials can easily be analysed using extra- or intracellular recording techniques. After a few days in culture, long-term potentiation of synaptic responses can reproducibly be induced. Evidence for a sprouting response during the first days in culture or following sections is illustrated. This technique may represent an interesting alternative to roller tube cultures for studies of the developmental changes occurring during the first days or weeks in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The phasor approach to fluorescence lifetime imaging analysis.

            Changing the data representation from the classical time delay histogram to the phasor representation provides a global view of the fluorescence decay at each pixel of an image. In the phasor representation we can easily recognize the presence of different molecular species in a pixel or the occurrence of fluorescence resonance energy transfer. The analysis of the fluorescence lifetime imaging microscopy (FLIM) data in the phasor space is done observing clustering of pixels values in specific regions of the phasor plot rather than by fitting the fluorescence decay using exponentials. The analysis is instantaneous since is not based on calculations or nonlinear fitting. The phasor approach has the potential to simplify the way data are analyzed in FLIM, paving the way for the analysis of large data sets and, in general, making the FLIM technique accessible to the nonexpert in spectroscopy and data analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.

              We report a water-based optical clearing agent, SeeDB, which clears fixed brain samples in a few days without quenching many types of fluorescent dyes, including fluorescent proteins and lipophilic neuronal tracers. Our method maintained a constant sample volume during the clearing procedure, an important factor for keeping cellular morphology intact, and facilitated the quantitative reconstruction of neuronal circuits. Combined with two-photon microscopy and an optimized objective lens, we were able to image the mouse brain from the dorsal to the ventral side. We used SeeDB to describe the near-complete wiring diagram of sister mitral cells associated with a common glomerulus in the mouse olfactory bulb. We found the diversity of dendrite wiring patterns among sister mitral cells, and our results provide an anatomical basis for non-redundant odor coding by these neurons. Our simple and efficient method is useful for imaging intact morphological architecture at large scales in both the adult and developing brains.
                Bookmark

                Author and article information

                Contributors
                +(213) 740-6328 , bherring@usc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 September 2017
                19 September 2017
                2017
                : 8
                : 601
                Affiliations
                [1 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Department of Chemistry, , University of Southern California, ; Los Angeles, CA 90089 USA
                [2 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Department of Biological Sciences, , University of Southern California, ; Los Angeles, CA 90089 USA
                [3 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Neuroscience Graduate Program, , University of Southern California, ; Los Angeles, CA 90089 USA
                [4 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Bridge Institute, , University of Southern California, ; Los Angeles, CA 90089 USA
                Author information
                http://orcid.org/0000-0002-6974-5911
                Article
                472
                10.1038/s41467-017-00472-0
                5605661
                28928363
                1dc54606-eaf4-45b0-8089-1398515b94b4
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 May 2016
                : 30 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article