8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Expeditious and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates

      , ,
      Angewandte Chemie International Edition
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Collective synthesis of natural products by means of organocascade catalysis.

          Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. ©2011 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis for the regulation of tubulin by vinblastine.

            Vinblastine is one of several tubulin-targeting Vinca alkaloids that have been responsible for many chemotherapeutic successes since their introduction in the clinic as antitumour drugs. In contrast with the two other classes of small tubulin-binding molecules (Taxol and colchicine), the binding site of vinblastine is largely unknown and the molecular mechanism of this drug has remained elusive. Here we report the X-ray structure of vinblastine bound to tubulin in a complex with the RB3 protein stathmin-like domain (RB3-SLD). Vinblastine introduces a wedge at the interface of two tubulin molecules and thus interferes with tubulin assembly. Together with electron microscopical and biochemical data, the structure explains vinblastine-induced tubulin self-association into spiral aggregates at the expense of microtubule growth. It also shows that vinblastine and the amino-terminal part of RB3-SLD binding sites share a hydrophobic groove on the alpha-tubulin surface that is located at an intermolecular contact in microtubules. This is an attractive target for drugs designed to perturb microtubule dynamics by interfacial interference, for which tubulin seems ideally suited because of its propensity to self-associate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visible light-mediated intermolecular C-H functionalization of electron-rich heterocycles with malonates.

              The photoredox-mediated direct intermolecular C-H functionalization of substituted indoles, pyrroles, and furans with diethyl bromomalonate is described, utilizing the visible light-induced reductive quenching pathway of Ru(bpy)(3)Cl(2). An analysis of reductive quenchers and mechanistic considerations has led to an optimized protocol for the heteroaromatic alkylations, providing products in good yields and regioselectivities, as well as successfully eliminating previously observed competitive side reactions. This methodology is highlighted by its neutral conditions, activity at ambient temperatures, low catalyst loading, functional group tolerance, and chemoselectivity.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                October 17 2016
                October 17 2016
                : 55
                : 43
                : 13436-13440
                Article
                10.1002/anie.201605503
                1d4f7720-26fd-4244-8a6e-699f8e9f9d35
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article