23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe the antiviral activity of plant lectins with specificity for different glycan structures against the severe acute respiratory syndrome coronavirus (SARS-CoV) and the feline infectious peritonitis virus (FIPV) in vitro. The SARS-CoV emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and FIPV infection causes a chronic and often fatal peritonitis in cats. A unique collection of 33 plant lectins with different specificities were evaluated. The plant lectins possessed marked antiviral properties against both coronaviruses with EC 50 values in the lower microgram/ml range (middle nanomolar range), being non-toxic (CC 50) at 50–100 μg/ml. The strongest anti-coronavirus activity was found predominantly among the mannose-binding lectins. In addition, a number of galactose-, N-acetylgalactosamine-, glucose-, and N-acetylglucosamine-specific plant agglutinines exhibited anti-coronaviral activity. A significant correlation (with an r-value of 0.70) between the EC 50 values of the 10 mannose-specific plant lectins effective against the two coronaviruses was found. In contrast, little correlation was seen between the activity of other types of lectins. Two targets of possible antiviral intervention were identified in the replication cycle of SARS-CoV. The first target is located early in the replication cycle, most probably viral attachment, and the second target is located at the end of the infectious virus cycle.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

          P Rota (2003)
          In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia.

            Despite extensive laboratory investigations in patients with respiratory tract infections, no microbiological cause can be identified in a significant proportion of patients. In the past 3 years, several novel respiratory viruses, including human metapneumovirus, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and human coronavirus NL63, were discovered. Here we report the discovery of another novel coronavirus, coronavirus HKU1 (CoV-HKU1), from a 71-year-old man with pneumonia who had just returned from Shenzhen, China. Quantitative reverse transcription-PCR showed that the amount of CoV-HKU1 RNA was 8.5 to 9.6 x 10(6) copies per ml in his nasopharyngeal aspirates (NPAs) during the first week of the illness and dropped progressively to undetectable levels in subsequent weeks. He developed increasing serum levels of specific antibodies against the recombinant nucleocapsid protein of CoV-HKU1, with immunoglobulin M (IgM) titers of 1:20, 1:40, and 1:80 and IgG titers of <1:1,000, 1:2,000, and 1:8,000 in the first, second and fourth weeks of the illness, respectively. Isolation of the virus by using various cell lines, mixed neuron-glia culture, and intracerebral inoculation of suckling mice was unsuccessful. The complete genome sequence of CoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA, with G+C content of 32%, the lowest among all known coronaviruses with available genome sequence. Phylogenetic analysis reveals that CoV-HKU1 is a new group 2 coronavirus. Screening of 400 NPAs, negative for SARS-CoV, from patients with respiratory illness during the SARS period identified the presence of CoV-HKU1 RNA in an additional specimen, with a viral load of 1.13 x 10(6) copies per ml, from a 35-year-old woman with pneumonia. Our data support the existence of a novel group 2 coronavirus associated with pneumonia in humans.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche

              G. Kärber (1931)
                Bookmark

                Author and article information

                Contributors
                Journal
                Antiviral Res
                Antiviral Res
                Antiviral Research
                Elsevier B.V.
                0166-3542
                1872-9096
                30 March 2007
                September 2007
                30 March 2007
                : 75
                : 3
                : 179-187
                Affiliations
                [a ]Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
                [b ]Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Belgium
                [c ]Department of Molecular Biotechnology, University of Gent, Belgium
                [d ]Department of Infectious Diseases & Immunology, Veterinary Faculty, Utrecht, The Netherlands
                Author notes
                [* ]Corresponding author. Tel.: +32 16 337352; fax: +32 16 337340. jan.balzarini@ 123456rega.kuleuven.be
                [** ]Corresponding author at: Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium. Tel.: +32 16 347908; fax: +32 16 347900. marc.vanranst@ 123456uz.kuleuven.ac.be
                Article
                S0166-3542(07)00238-0
                10.1016/j.antiviral.2007.03.003
                7114093
                17428553
                1cb87485-7b7b-400d-8c69-554c7ec06aa8
                Copyright © 2007 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 19 December 2006
                : 5 March 2007
                Categories
                Article

                Infectious disease & Microbiology
                coronavirus,plant lectins,antiviral,sars-cov,mannose
                Infectious disease & Microbiology
                coronavirus, plant lectins, antiviral, sars-cov, mannose

                Comments

                Comment on this article