16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What You Need to Know Before Implementing a Clinical Research Data Warehouse: Comparative Review of Integrated Data Repositories in Health Care Institutions

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Integrated data repositories (IDRs), also referred to as clinical data warehouses, are platforms used for the integration of several data sources through specialized analytical tools that facilitate data processing and analysis. IDRs offer several opportunities for clinical data reuse, and the number of institutions implementing an IDR has grown steadily in the past decade.

          Objective

          The architectural choices of major IDRs are highly diverse and determining their differences can be overwhelming. This review aims to explore the underlying models and common features of IDRs, provide a high-level overview for those entering the field, and propose a set of guiding principles for small- to medium-sized health institutions embarking on IDR implementation.

          Methods

          We reviewed manuscripts published in peer-reviewed scientific literature between 2008 and 2020, and selected those that specifically describe IDR architectures. Of 255 shortlisted articles, we found 34 articles describing 29 different architectures. The different IDRs were analyzed for common features and classified according to their data processing and integration solution choices.

          Results

          Despite common trends in the selection of standard terminologies and data models, the IDRs examined showed heterogeneity in the underlying architecture design. We identified 4 common architecture models that use different approaches for data processing and integration. These different approaches were driven by a variety of features such as data sources, whether the IDR was for a single institution or a collaborative project, the intended primary data user, and purpose (research-only or including clinical or operational decision making).

          Conclusions

          IDR implementations are diverse and complex undertakings, which benefit from being preceded by an evaluation of requirements and definition of scope in the early planning stage. Factors such as data source diversity and intended users of the IDR influence data flow and synchronization, both of which are crucial factors in IDR architecture planning.

          Related collections

          Most cited references276

          • Record: found
          • Abstract: found
          • Article: not found

          Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2).

          Informatics for Integrating Biology and the Bedside (i2b2) is one of seven projects sponsored by the NIH Roadmap National Centers for Biomedical Computing (http://www.ncbcs.org). Its mission is to provide clinical investigators with the tools necessary to integrate medical record and clinical research data in the genomics age, a software suite to construct and integrate the modern clinical research chart. i2b2 software may be used by an enterprise's research community to find sets of interesting patients from electronic patient medical record data, while preserving patient privacy through a query tool interface. Project-specific mini-databases ("data marts") can be created from these sets to make highly detailed data available on these specific patients to the investigators on the i2b2 platform, as reviewed and restricted by the Institutional Review Board. The current version of this software has been released into the public domain and is available at the URL: http://www.i2b2.org/software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Federated learning of predictive models from federated Electronic Health Records

            Background In an era of “big data,” computationally efficient and privacy-aware solutions for large-scale machine learning problems become crucial, especially in the healthcare domain, where large amounts of data are stored in different locations and owned by different entities. Past research has been focused on centralized algorithms, which assume the existence of a central data repository (database) which stores and can process the data from all participants. Such an architecture, however, can be impractical when data are not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks which could compromise the integrity and privacy of the data. Given scores of data widely spread across hospitals/individuals, a decentralized computationally scalable methodology is very much in need. Objective We aim at solving a binary supervised classification problem to predict hospitalizations for cardiac events using a distributed algorithm. We seek to develop a general decentralized optimization framework enabling multiple data holders to collaborate and converge to a common predictive model, without explicitly exchanging raw data. Methods We focus on the soft-margin l 1 -regularized sparse Support Vector Machine (sSVM) classifier. We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the large-scale sSVM problem in a decentralized fashion. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the data holders to collaborate, while keeping every participant’s data private. Results We test cPDS on the problem of predicting hospitalizations due to heart diseases within a calendar year based on information in the patients Electronic Health Records prior to that year. cPDS converges faster than centralized methods at the cost of some communication between agents. It also converges faster and with less communication overhead compared to an alternative distributed algorithm. In both cases, it achieves similar prediction accuracy measured by the Area Under the Receiver Operating Characteristic Curve (AUC) of the classifier. We extract important features discovered by the algorithm that are predictive of future hospitalizations, thus providing a way to interpret the classification results and inform prevention efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electronic health record adoption in US hospitals: the emergence of a digital “advanced use” divide

              While most hospitals have adopted electronic health records (EHRs), we know little about whether hospitals use EHRs in advanced ways that are critical to improving outcomes, and whether hospitals with fewer resources – small, rural, safety-net – are keeping up. Using 2008–2015 American Hospital Association Information Technology Supplement survey data, we measured “basic” and “comprehensive” EHR adoption among hospitals to provide the latest national numbers. We then used new supplement questions to assess advanced use of EHRs and EHR data for performance measurement and patient engagement functions. To assess a digital “advanced use” divide, we ran logistic regression models to identify hospital characteristics associated with high adoption in each advanced use domain. We found that 80.5% of hospitals adopted at least a basic EHR system, a 5.3 percentage point increase from 2014. Only 37.5% of hospitals adopted at least 8 (of 10) EHR data for performance measurement functions, and 41.7% of hospitals adopted at least 8 (of 10) patient engagement functions. Critical access hospitals were less likely to have adopted at least 8 performance measurement functions (odds ratio [OR] = 0.58; P  < .001) and at least 8 patient engagement functions (OR = 0.68; P  = 0.02). While the Health Information Technology for Economic and Clinical Health Act resulted in widespread hospital EHR adoption, use of advanced EHR functions lags and a digital divide appears to be emerging, with critical-access hospitals in particular lagging behind. This is concerning, because EHR-enabled performance measurement and patient engagement are key contributors to improving hospital performance. Hospital EHR adoption is widespread and many hospitals are using EHRs to support performance measurement and patient engagement. However, this is not happening across all hospitals.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Form Res
                JMIR Form Res
                JFR
                JMIR Formative Research
                JMIR Publications (Toronto, Canada )
                2561-326X
                August 2020
                27 August 2020
                : 4
                : 8
                : e17687
                Affiliations
                [1 ] Canada’s Michael Smith Genome Sciences Centre BC Cancer Vancouver, BC Canada
                [2 ] Bioinformatics Graduate Program University of British Columbia Vancouver, BC Canada
                [3 ] Research Institute BC Children’s Hospital Vancouver, BC Canada
                [4 ] School of Population and Public Health University of British Columbia Vancouver, BC Canada
                [5 ] Department of Pediatrics University of British Columbia Vancouver, BC Canada
                [6 ] Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver, BC Canada
                Author notes
                Corresponding Author: Matthias Görges mgorges@ 123456bcchr.ca
                Author information
                https://orcid.org/0000-0002-5975-0805
                https://orcid.org/0000-0001-8346-8490
                https://orcid.org/0000-0002-9998-7858
                https://orcid.org/0000-0003-2193-178X
                Article
                v4i8e17687
                10.2196/17687
                7484778
                32852280
                1af73558-1266-4ea3-8d42-e20179f8b10c
                ©Kristina K Gagalova, M Angelica Leon Elizalde, Elodie Portales-Casamar, Matthias Görges. Originally published in JMIR Formative Research (http://formative.jmir.org), 27.08.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on http://formative.jmir.org, as well as this copyright and license information must be included.

                History
                : 3 January 2020
                : 1 March 2020
                : 9 June 2020
                : 17 July 2020
                Categories
                Review
                Review

                database,data warehousing,data aggregation,information storage and retrieval,data analytics,health informatics

                Comments

                Comment on this article