9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Artificial intelligence for oral and maxillo-facial surgery: A narrative review

      , , ,
      Journal of Stomatology, Oral and Maxillofacial Surgery
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1125390e101">Artificial Intelligence (AI) is a set of technologies that simulate human cognition in order to address a specific problem. The improvement in computing speed, the exponential production and the routine collection of data have led to the rapid development of AI in the health sector. In this review, we propose to provide surgeons with the essential technical elements to help them understand the possibilities offered by AI and to review the current applications of AI for oral and maxillofacial surgery (OMFS). The review of the literature reveals a real research boom of AI in all fields in OMFS. The algorithms used are related to machine learning, with a strong representation of the convolutional neural networks specific to deep learning. The complex architecture of these networks gives them the capacity to extract and process the elementary characteristics of an image, and they are therefore particularly used for diagnostic purposes on medical imagery or facial photography. We identified representative articles dealing with AI algorithms providing assistance in diagnosis, therapeutic decision, preoperative planning, or prediction and evaluation of the outcomes. Thanks to their learning, classification, prediction and detection capabilities, AI algorithms complement human skills while limiting their imperfections. However, these algorithms should be subject to rigorous clinical evaluation, and ethical reflection on data protection should be systematically conducted. </p>

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Judgment under Uncertainty: Heuristics and Biases.

            This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiomics: the bridge between medical imaging and personalized medicine

              Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.
                Bookmark

                Author and article information

                Journal
                Journal of Stomatology, Oral and Maxillofacial Surgery
                Journal of Stomatology, Oral and Maxillofacial Surgery
                Elsevier BV
                24687855
                June 2022
                June 2022
                : 123
                : 3
                : 276-282
                Article
                10.1016/j.jormas.2022.01.010
                35091121
                b2e1fb49-a81b-47b4-a849-e401e0babd0b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article