3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) by SARS-CoV-2 in non-hospitalised HIV-infected patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          While acute SARS-CoV-2 infection and associated inflammation resulted in substantial morbidity and mortality during the COVID-19 pandemic, particularly in unvaccinated patients, long-term effects of SARS-CoV-2 exposure for reactivation of latent oncogenic herpesviruses, such as KSHV, is unknown.

          Methods

          We performed a longitudinal observational cross-sectional study on 407 non-hospitalised adult HIV-infected (CD4 count <350 cells/μL) patients attending antiretroviral therapy services in Gugulethu, South Africa, from October 2020 to April 2023.

          Findings

          KSHV seroprevalence was 53.5%; the quarterly SARS-CoV-2 seroprevalence increased from 76.2% (before roll-out of COVID-19 vaccinations) to 94.9%, with 32.2% being self-reportedly vaccinated against COVID-19. Over the course of recruitment, the quarterly percentage of patients with detectable KSHV viral load (VL) in the peripheral blood increased from 3.3% to 69.2%. The presence of KSHV VL was significantly associated with SARS-CoV-2 RBD antibody titers in unvaccinated (median RBD IgG OD 1.24 [IQR 0.82–2.42] in non-reactivated versus 2.83 [IQR 1.08–4.72] in reactivated patients, p = 0.0030) but not in vaccinated patients (median RBD IgG OD 5.13 [IQR 4.11–6.36] in non-reactivated versus 4.53 [IQR 2.90–5.92] in reactivated patients, p = 0.086). Further logistic regression revealed significantly higher odds of KSHV reactivation in unvaccinated, previously SARS-CoV-2 exposed patients (p = 0.015, adjusted OR 1.28 [95% CI: 1.05–1.55]), but not vaccinated patients (p = 0.080, adjusted OR 0.83 [95% CI: 0.67–1.02]). Interestingly, detectable KSHV VL was not associated with increased inflammatory markers such as C-reactive protein and interleukin-6.

          Interpretation

          High, and most likely repeated, exposure to SARS-CoV-2 in unvaccinated individuals may have long-term consequences for reactivation of KSHV infection as shown here in the context of HIV-infected patients with impaired immune functions. Post-pandemic prevention and/or monitoring strategies of potential KSHV-associated pathologies in high-risk patients with immunodeficiencies are therefore highly recommended.

          Funding

          This research was funded by the EDCTP2 programme (Training and Mobility Action TMA2018SF-2446).

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support.

            Research electronic data capture (REDCap) is a novel workflow methodology and software solution designed for rapid development and deployment of electronic data capture tools to support clinical and translational research. We present: (1) a brief description of the REDCap metadata-driven software toolset; (2) detail concerning the capture and use of study-related metadata from scientific research teams; (3) measures of impact for REDCap; (4) details concerning a consortium network of domestic and international institutions collaborating on the project; and (5) strengths and limitations of the REDCap system. REDCap is currently supporting 286 translational research projects in a growing collaborative network including 27 active partner institutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study

              Dear Editor, An outbreak of an unknown infectious pneumonia has recently occurred in Wuhan, China. 1 The pathogen of the disease was quickly identified as a novel coronavirus (SARS-CoV-2, severe acute respiratory syndrome coronavirus 2), and the disease was named coronavirus disease-19 (COVID-19). 2 The virus has so far caused 78,959 confirmed cases and 2791 deaths in China according to the reports of government. COVID-19 has been spreading in many countries such as Japan, Korea, Singapore, Iran, and Italia. The clinical manifestation of COVID-19 include fever, cough, fatigue, muscle pain, diarrhea, and pneumonia, which can develop to acute respiratory distress syndrome, metabolic acidosis, septic shock, coagulation dysfunction, and organ failure such as liver, kidney, and heart failure. 1,3,4 Unfortunately, there is no effective medication other than comprehensive support. However, the mild type of COVID-19 patients can recover shortly after appropriate clinical intervention. The moderate type patients, especially the elderly or the ones with comorbidity, can worsen and became severe, indicating high mortality rate. 3,4 However, efficient indicators for the disease severity, therapeutic response and disease outcome have not been fully investigated. Once such indicators are present, reasonable medication and care can be inclined, which is believed to significantly reduce the mortality rate of severe patients. Routine examinations include complete blood count, coagulation profile, and serum biochemical test (including renal and liver function, creatine kinase, lactate dehydrogenase, and electrolytes). Complete blood count is the most available, efficient and economic examination. This study aims to retrospect and analyze the time-courses of complete blood count of cured and dead patients, in order to obtain key indicators of disease progression and outcome and to provide guidance for subsequent clinical practice. Low LYM% is a predictor of prognosis in COVID-19 patients We first randomly selected five death cases and monitored dynamic changes in blood tests for each patient from disease onset to death. Although course of disease in each patient was different, inter-day variations of most parameters studied are fairly constant among all five patients (Supplementary Fig. S1a–f). Among all parameters, blood lymphocyte percentage (LYM%) showed the most significant and consistent trend (Supplementary Fig. S1f), suggesting that this indicator might reflect the disease progression. To further confirm the relationship between blood LYM% and patient’s condition, we increased our sample size to 12 death cases (mean age: 76 years; average therapeutic time: 20 days) (Supplementary Table S1). Most cases showed that LYM% was reduced to lower than 5% within 2 weeks after disease onset (Supplementary Fig. S2a). We also randomly selected seven cases (mean age: 35 years, average therapeutic time: 35 days) with severe symptoms and treatment outcomes (Supplementary Table S2) and 11 cases (mean age: 49; average therapeutic time: 26 days) with moderate symptoms and treatment outcomes (Supplementary Table S3). LYM% of severe patients decreased initially and then increased to higher than 10% until discharged (Supplementary Fig. S2b). In contrast, LYM% of moderate patients fluctuated very little after disease onset and was higher than 20% when discharged (Supplementary Fig. S2c). These results suggest that lymphopenia is a predictor of prognosis in COVID-19 patients. Establishment of a Time-LYM% model from discharged COVID-19 patients By summarizing all the death and cured cases in our hospital to depict the time-LYM% curve (Fig. 1a), we established a Time-LYM% model (TLM) for disease classification and prognosis prediction (Fig. 1b). We defined TLM as follows: patients have varying LYM% after the onset of COVID-19. At the 1st time point (TLM-1) of 10–12 days after symptom onset, patients with LYM% > 20% are classified as moderate type and can recover quickly. Patients with LYM%  20% are in recovery; patients with 5%  20% at TLM-1 are classified as moderate type and the ones with LYM%  20% at TLM-2, those pre-severe patients are reclassified as moderate. If 5% < LYM% < 20% at TLM-2, the pre-severe patients are indeed typed as severe. If LYM% < 5% at TLM-2, those patients are suggested as critically ill. The moderate and severe types are curable, while the critically ill types need intensive care has a poor prognosis. c Ninety COVID-19 patients were currently hospitalized in light of the classification criteria of the New Coronavirus Pneumonia Diagnosis Program (5th edition): 55 patients with moderate type, 24 patients with severe type and 11 patients with critically ill type. At TLM-1, LYM% in 24 out of 55 moderate cases was lower than 20%; At TLM-2, LYM% in all 24 patients was above 5%, indicating that these patients would be curable. Regarding other 24 patients with severe symptoms, LYM% at TLM-1 was lower than 20% in 20 out of 24 cases. LYM% at TLM-2 in 6 cases was <5%, indicating a poor prognosis. In 11 out of 11 critically ill patients, LYM% at TLM-1 was lower than 20%. LYM% at TLM-2 in six cases was lower than 5%, suggesting a poor prognosis. d The consistency between Guideline and TLM-based disease classification in c was tested using kappa statistic. Kappa = 0.48; P < 0.005 Validation of TLM in disease classification in hospitalized COVID-19 patients To validate the reliability of TLM, 90 hospitalized COVID-19 patients typed by the latest classification guideline (5th edition) were redefined with TLM. LYM% in 24 out of 55 moderate cases was lower than 20% at TLM-1; LYM% of all these patients was above 5% at TLM-2, indicating that these patients would recover soon. LYM% at TLM-1 was lower than 20% in 20 out of 24 severe cases; LYM% at TLM-2 was <5% in six cases, indicating a poor prognosis. LYM% at TLM-1 in 11 out of 11 critically ill patients was lower than 20%; LYM% of these patients at TLM-2 was lower than 5% in six cases, suggesting a poor outcome (Fig. 1c). Furthermore, with kappa statistic test, we verified the consistency between TLM and the existing guideline in disease typing (Fig. 1d). LYM% indicates disease severity of COVID-19 patients The classification of disease severity in COVID-19 is very important for the grading treatment of patients. In particular, when the outbreak of an epidemic occurs and medical resources are relatively scarce, it is necessary to conduct grading severity and treatment, thereby optimize the allocation of rescue resources and prevent the occurrence of overtreatment or undertreatment. According to the latest 5th edition of the national treatment guideline, COVID-19 can be classified into four types. Pulmonary imaging is the main basis of classification, and other auxiliary examinations are used to distinguish the severity. Blood tests are easy, fast, and cost-effective. However, none of the indicators in blood tests were included in the classification criteria. This study suggested that LYM% can be used as a reliable indicator to classify the moderate, severe, and critical ill types independent of any other auxiliary indicators. Analysis of possible reasons for lymphopenia in COVID-19 patients Lymphocytes play a decisive role in maintaining immune homeostasis and inflammatory response throughout the body. Understanding the mechanism of reduced blood lymphocyte levels is expected to provide an effective strategy for the treatment of COVID-19. We speculated four potential mechanisms leading to lymphocyte deficiency. (1) The virus might directly infect lymphocytes, resulting in lymphocyte death. Lymphocytes express the coronavirus receptor ACE2 and may be a direct target of viruses. 5 (2) The virus might directly destroy lymphatic organs. Acute lymphocyte decline might be related to lymphocytic dysfunction, and the direct damage of novel coronavirus virus to organs such as thymus and spleen cannot be ruled out. This hypothesis needs to be confirmed by pathological dissection in the future. (3) Inflammatory cytokines continued to be disordered, perhaps leading to lymphocyte apoptosis. Basic researches confirmed that tumour necrosis factor (TNF)α, interleukin (IL)-6, and other pro-inflammatory cytokines could induce lymphocyte deficiency. 6 (4) Inhibition of lymphocytes by metabolic molecules produced by metabolic disorders, such as hyperlactic acidemia. The severe type of COVID-19 patients had elevated blood lactic acid levels, which might suppress the proliferation of lymphocytes. 7 Multiple mechanisms mentioned above or beyond might work together to cause lymphopenia, and further research is needed. In conclusion, lymphopenia is an effective and reliable indicator of the severity and hospitalization in COVID-19 patients. We suggest that TLM should be included in the diagnosis and therapeutic guidelines of COVID-19. Supplementary information Supplementary information
                Bookmark

                Author and article information

                Contributors
                Journal
                eBioMedicine
                EBioMedicine
                eBioMedicine
                Elsevier
                2352-3964
                02 February 2024
                February 2024
                02 February 2024
                : 100
                : 104986
                Affiliations
                [a ]International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
                [b ]Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, South Africa
                [c ]Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
                [d ]Desmond Tutu Health Foundation, Cape Town, South Africa
                [e ]Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, South Africa
                Author notes
                []Corresponding author. ICGEB Cape Town, South Africa. georgia.schafer@ 123456icgeb.org
                [f]

                These authors contributed equally.

                Article
                S2352-3964(24)00021-5 104986
                10.1016/j.ebiom.2024.104986
                10850403
                38306893
                1a8c8362-0b32-4fcc-8549-43088d861320
                © 2024 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 September 2023
                : 10 January 2024
                : 13 January 2024
                Categories
                Articles

                kshv,hiv,sars-cov-2,covid-19 vaccination,lmic,art
                kshv, hiv, sars-cov-2, covid-19 vaccination, lmic, art

                Comments

                Comment on this article