0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assessment of intra- and inter-regional interrelations between GABA+, Glx and BOLD during pain perception in the human brain – A combined 1H fMRS and fMRI study

      , , , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Repetition and the brain: neural models of stimulus-specific effects.

          One of the most robust experience-related cortical dynamics is reduced neural activity when stimuli are repeated. This reduction has been linked to performance improvements due to repetition and also used to probe functional characteristics of neural populations. However, the underlying neural mechanisms are as yet unknown. Here, we consider three models that have been proposed to account for repetition-related reductions in neural activity, and evaluate them in terms of their ability to account for the main properties of this phenomenon as measured with single-cell recordings and neuroimaging techniques. We also discuss future directions for distinguishing between these models, which will be important for understanding the neural consequences of repetition and for interpreting repetition-related effects in neuroimaging data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human brain mechanisms of pain perception and regulation in health and disease.

            The perception of pain due to an acute injury or in clinical pain states undergoes substantial processing at supraspinal levels. Supraspinal, brain mechanisms are increasingly recognized as playing a major role in the representation and modulation of pain experience. These neural mechanisms may then contribute to interindividual variations and disabilities associated with chronic pain conditions. To systematically review the literature regarding how activity in diverse brain regions creates and modulates the experience of acute and chronic pain states, emphasizing the contribution of various imaging techniques to emerging concepts. MEDLINE and PRE-MEDLINE searches were performed to identify all English-language articles that examine human brain activity during pain, using hemodynamic (PET, fMRI), neuroelectrical (EEG, MEG) and neurochemical methods (MRS, receptor binding and neurotransmitter modulation), from January 1, 1988 to March 1, 2003. Additional studies were identified through bibliographies. Studies were selected based on consensus across all four authors. The criteria included well-designed experimental procedures, as well as landmark studies that have significantly advanced the field. Sixty-eight hemodynamic studies of experimental pain in normal subjects, 30 in clinical pain conditions, and 30 using neuroelectrical methods met selection criteria and were used in a meta-analysis. Another 24 articles were identified where brain neurochemistry of pain was examined. Technical issues that may explain differences between studies across laboratories are expounded. The evidence for and the respective incidences of brain areas constituting the brain network for acute pain are presented. The main components of this network are: primary and secondary somatosensory, insular, anterior cingulate, and prefrontal cortices (S1, S2, IC, ACC, PFC) and thalamus (Th). Evidence for somatotopic organization, based on 10 studies, and psychological modulation, based on 20 studies, is discussed, as well as the temporal sequence of the afferent volley to the cortex, based on neuroelectrical studies. A meta-analysis highlights important methodological differences in identifying the brain network underlying acute pain perception. It also shows that the brain network for acute pain perception in normal subjects is at least partially distinct from that seen in chronic clinical pain conditions and that chronic pain engages brain regions critical for cognitive/emotional assessments, implying that this component of pain may be a distinctive feature between chronic and acute pain. The neurochemical studies highlight the role of opiate and catecholamine transmitters and receptors in pain states, and in the modulation of pain with environmental and genetic influences. The nociceptive system is now recognized as a sensory system in its own right, from primary afferents to multiple brain areas. Pain experience is strongly modulated by interactions of ascending and descending pathways. Understanding these modulatory mechanisms in health and in disease is critical for developing fully effective therapies for the treatment of clinical pain conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What we can do and what we cannot do with fMRI.

              Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.
                Bookmark

                Author and article information

                Journal
                Neuroscience
                Neuroscience
                Elsevier BV
                03064522
                December 2017
                December 2017
                : 365
                : 125-136
                Article
                10.1016/j.neuroscience.2017.09.037
                28965838
                1a0818ba-04e3-487c-be1a-5fb669822a68
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article