21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multimodal neuroimaging studies combining proton magnetic resonance spectroscopy ( 1H-MRS) to quantify GABA and/or glutamate concentrations and functional magnetic resonance imaging (fMRI) to measure brain activity non-invasively have advanced understanding of how neurochemistry and neurophysiology may be related at a macroscopic level. The present study aimed to perform a systematic review and meta-analysis of available studies examining the relationship between 1H-MRS glutamate and/or GABA levels and task-related fMRI signal in the healthy brain. Ovid (Medline, Embase, and PsycINFO) and Pubmed databases were systematically searched to identify articles published until December 2019. The primary outcome of interest was the association between resting levels of glutamate or GABA and task-related fMRI. Fifty-five papers were identified for inclusion in the systematic review. A further 22 studies were entered into four separate meta-analyses. These meta-analyses found evidence of significant negative associations between local GABA levels and (a) fMRI activation to visual tasks in the occipital lobe, and (b) activation to emotion processing in the medial prefrontal cortex (mPFC)/anterior cingulate cortex (ACC). However, there was no significant association between mPFC/ACC glutamate levels and fMRI activation to cognitive control tasks or to emotional processing, with the relationship to emotion processing related neural activity narrowly missing significance. Moreover, our systematic review also found converging evidence of negative associations between GABA levels and local brain activity, and positive associations between glutamate levels and distal brain activity, outside of the 1H-MRS sampling region. Albeit less consistently, additional relationships between GABA levels and distal brain activity and between glutamate levels and local brain activity were found. It remains unclear if the absence of effects for other brain regions and other cognitive-emotional domains reflects study heterogeneity or potential confounding effects of age, sex, or other unknown factors. Advances in 1H-MRS methodology as well as in the integration of 1H-MRS readouts with other imaging modalities for indexing neural activity hold great potential to reveal key aspects of the pathophysiology of mental health disorders involving aberrant interactions between neurochemistry and neurophysiology such as schizophrenia.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          How inhibition shapes cortical activity.

          Cortical processing reflects the interplay of synaptic excitation and synaptic inhibition. Rapidly accumulating evidence is highlighting the crucial role of inhibition in shaping spontaneous and sensory-evoked cortical activity and thus underscores how a better knowledge of inhibitory circuits is necessary for our understanding of cortical function. We discuss current views of how inhibition regulates the function of cortical neurons and point to a number of important open questions. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What we can do and what we cannot do with fMRI.

            Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.

              Markers of inhibitory neurotransmission are altered in the prefrontal cortex (PFC) of subjects with schizophrenia, and several lines of evidence suggest that these alterations may be most prominent in the subset of GABA-containing neurons that express the calcium-binding protein, parvalbumin (PV). To test this hypothesis, we evaluated the expression of mRNAs for PV, another calcium-binding protein, calretinin (CR), and glutamic acid decarboxylase (GAD67) in postmortem brain specimens from 15 pairs of subjects with schizophrenia and matched control subjects using single- and dual-label in situ hybridization. Signal intensity for PV mRNA expression in PFC area 9 was significantly decreased in the subjects with schizophrenia, predominantly in layers III and IV. Analysis at the cellular level revealed that this decrease was attributable principally to a reduction in PV mRNA expression per neuron rather than by a decreased density of PV mRNA-positive neurons. In contrast, the same measures of CR mRNA expression were not altered in schizophrenia. These findings were confirmed by findings from cDNA microarray studies using different probes. Across the subjects with schizophrenia, the decrease in neuronal PV mRNA expression was highly associated (r = 0.84) with the decrease in the density of neurons containing detectable levels of GAD67 mRNA. Furthermore, simultaneous detection of PV and GAD67 mRNAs revealed that in subjects with schizophrenia only 55% of PV mRNA-positive neurons had detectable levels of GAD67 mRNA. Given the critical role that PV-containing GABA neurons appear to play in regulating the cognitive functions mediated by the PFC, the selective alterations in gene expression in these neurons may contribute to the cognitive deficits characteristic of schizophrenia.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                08 March 2021
                2021
                : 12
                : 644315
                Affiliations
                [1] 1Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, United Kingdom
                [2] 2Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, United Kingdom
                [3] 3Brighton and Sussex Medical School, University of Sussex & University of Brighton , Brighton, United Kingdom
                [4] 4Medical Research Centre Centre for Neurodevelopmental Disorders, King's College London , London, United Kingdom
                Author notes

                Edited by: Richard Edden, Johns Hopkins University, United States

                Reviewed by: Yoshihiko Matsumoto, Yamagata University, Japan; Maria Grazia Morgese, University of Foggia, Italy

                *Correspondence: Amanda Kiemes amanda.s.kiemes@ 123456kcl.ac.uk

                This article was submitted to Molecular Psychiatry, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2021.644315
                7982484
                33762983
                99e4d3dd-820f-4891-9ab6-9e0696d30cb4
                Copyright © 2021 Kiemes, Davies, Kempton, Lukow, Bennallick, Stone and Modinos.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2020
                : 15 February 2021
                Page count
                Figures: 5, Tables: 9, Equations: 1, References: 87, Pages: 24, Words: 13145
                Funding
                Funded by: Royal Society 10.13039/501100000288
                Funded by: Wellcome Trust 10.13039/100010269
                Categories
                Psychiatry
                Systematic Review

                Clinical Psychology & Psychiatry
                glutamate,gaba,magnetic resonance spectroscopy,fmri,multimodal neuroimaging

                Comments

                Comment on this article