18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Preparation of 2D material dispersions and their applications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comprehensive review on the exfoliation of layer materials into 2D materials, their assembly, and applications in electronics and energy.

          Abstract

          Extensive research on two-dimensional (2D) materials has triggered the renaissance of an old topic, that is, the intercalation and exfoliation of layer materials. Such top-down exfoliation produced 2D materials and their dispersions have several advantages including low cost, scalable production capability, solution processability, and versatile functionalities stemming from the large number of species of layer materials, and show promising potential in many applications. In recent years, many new methods have been developed for exfoliating layer materials to 2D materials for different application purposes. In this review the different exfoliation approaches are first systematically analyzed from the viewpoint of methodology, and the advantages and disadvantages of each method are compared. Second, the assembly of exfoliated 2D materials into macrostructures by solution-based techniques is summarized. Third, the state-of-the-art applications of 2D material dispersions and their assemblies in electronics and optoelectronics, electrocatalysis, energy storage, etc., are discussed. Finally, insights and perspectives on current research challenges and future opportunities regarding the exfoliation and applications of 2D materials in dispersions are considered.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

          Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

            Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon-based supercapacitors produced by activation of graphene.

              Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.
                Bookmark

                Author and article information

                Contributors
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                2018
                2018
                : 47
                : 16
                : 6224-6266
                Affiliations
                [1 ]Shenzhen Geim Graphene Center (SGC)
                [2 ]Tsinghua-Berkeley Shenzhen Institute (TBSI)
                [3 ]Tsinghua University
                [4 ]Shenzhen 518055
                [5 ]P. R. China
                Article
                10.1039/C8CS00254A
                29905344
                19d91794-6c12-4d63-8af1-5a6e378e25d3
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article