1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The osteogenetic activities of mesenchymal stem cells in response to Mg 2+ ions and inflammatory cytokines: a numerical approach using fuzzy logic controllers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnesium (Mg 2+) ions are frequently reported to regulate osteogenic activities of mesenchymal stem cells (MSCs). In this study, we propose a numerical model to study the regulatory importance of Mg 2+ ions on MSCs osteoblastic differentiation in the presence of an inflammatory response. A fuzzy logic controller was formulated to receive the concentrations of Mg 2+ ions and the inflammatory cytokines of TNF-α, IL-10, IL-1β, and IL-8 as cellular inputs and predict the cells’ early and late differentiation rates. Five sets of empirical data obtained from published cell culture experiments were used to calibrate the model. The model successfully reproduced the empirical data regarding the concentration- and phase-dependent effect of Mg 2+ ions on the differentiation process. In agreement with the experiments, the model showed the stimulatory role of Mg 2+ ions on the early differentiation phase, once administered at low concentration, and their inhibitory role on the late differentiation phase. The numerical approach used in this study suggested 6–8 mM as the most effective concentration of Mg 2+ ions in promoting the early differentiation process. Also, the proposed model sheds light on the fundamental differences in the behavioral properties of cells cultured in different experiments, e.g. differentiation rate and the sensitivity of the cultured cells to stimulatory signals such as Mg 2+ ions. Thus, it can be used to interpret and compare different empirical findings. Moreover, the model successfully reproduced the nonlinearities in the concentration-dependent role of the inflammatory cytokines in early and late differentiation rates. Overall, the proposed model can be employed in studying the osteogenic properties of Mg-based implants in the presence of an inflammatory response.

          Author summary

          Magnesium (Mg) is an attractive material for bone implants as it fully degrades after implantation, saving pain and cost of the second surgery for implant removal. To advance its application in the orthopedic industry, it is paramount to fully understand the biological impact of the degradation products, in particular Mg 2+ ions. Here, we propose a computer model to study the effects of Mg 2+ ions on bone regeneration. The model focuses on stem cells and includes both the direct stimulation effects of Mg 2+ ions on cells and the indirect stimulus through the inflammatory system. The proposed model successfully reproduced the experimental data of five different studies. The model additionally highlighted differences amongst different experiments in terms of the cellular response to Mg 2+ ions. The proposed system therefore provides an important addition to the field of Mg implant research.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis.

          Both osteoblasts and osteoclasts are derived from progenitors that reside in the bone marrow; osteoblasts belong to the mesenchymal lineage of the marrow stroma, and osteoclasts to the hematopoietic lineage. The development of osteoclasts from their progenitors is dependent on stromal-osteoblastic cells, which are a major source of cytokines that are critical in osteoclastogenesis, such as interleukin-6 and interleukin-11. The production of interleukin-6 by stromal osteoblastic cells, as well as the responsiveness of bone marrow cells to cytokines such as interleukin-6 and interleukin-11, is regulated by sex steroids. When gonadal function is lost, the formation of osteoclasts as well as osteoblasts increases in the marrow, both changes apparently mediated by an increase in the production of interleukin-6 and perhaps by an increase in the responsiveness of bone marrow progenitor cells not only to interleukin-6 but also to other cytokines with osteoclastogenic and osteoblastogenic properties. The cellular activity of the bone marrow is also altered by the process of aging. Specifically, senescence may decrease the ability of the marrow to form osteoblast precursors. The association between the dysregulation of osteoclast or osteoblast development in the marrow and the disruption of the balance between bone resorption and bone formation, resulting in the loss of bone, leads to the following notion. Like homeostasis of other regenerating tissues, homeostasis of bone depends on the orderly replenishment of its cellular constituents. Excessive osteoclastogenesis and inadequate osteoblastogenesis are responsible for the mismatch between the formation and resorption of bone in postmenopausal and age-related osteopenia. The recognition that changes in the numbers of bone cells, rather than changes in the activity of individual cells, form the pathogenetic basis of osteoporosis is a major advance in understanding the mechanism of this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine

            Menstrual blood-derived stem cells (MenSCs) are a novel source of mesenchymal stem cells (MSCs). MenSCs are attracting more and more attention since their discovery in 2007. MenSCs also have no moral dilemma and show some unique features of known adult-derived stem cells, which provide an alternative source for the research and application in regenerative medicine. Currently, people are increasingly interested in their clinical potential due to their high proliferation, remarkable versatility, and periodic acquisition in a non-invasive manner with no other sources of MSCs that are comparable in adult tissue. In this review, the plasticity of pluripotent biological characteristics, immunophenotype and function, differentiative potential, and immunomodulatory properties are assessed. Furthermore, we also summarize their therapeutic effects and functional characteristics in various diseases, including liver disease, diabetes, stroke, Duchenne muscular dystrophy, ovarian-related disease, myocardial infarction, Asherman syndrome, Alzheimer’s disease, acute lung injury, cutaneous wound, endometriosis, and neurodegenerative diseases. Subsequently, the clinical potential of MenSCs is investigated. There is a need for a deeper understanding of its immunomodulatory and diagnostic properties with safety concern on a variety of environmental conditions (such as epidemiological backgrounds, age, hormonal status, and pre-contraceptive). In summary, MenSC has a great potential for reducing mortality and improving the quality of life of severe patients. As a kind of adult stem cells, MenSCs have multiple properties in treating a variety of diseases in regenerative medicine for future clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation.

              Magnesium alloys are being investigated for load-bearing bone fixation devices due to their initial mechanical strength, modulus similar to native bone, biocompatibility and ability to degrade in vivo. Previous studies have found Mg alloys to support bone regeneration in vivo, but the mechanisms have not been investigated in detail. In this study, we analyzed the effects of Mg(2+) stimulation on intracellular signaling mechanisms of human bone marrow stromal cells (hBMSCs). hBMSCs were cultured in medium containing 0.8, 5, 10, 20 and 100mM MgSO4, either with or without osteogenic induction factors. After 3weeks, mineralization of extracellular matrix (ECM) was analyzed by Alizarin red staining, and gene expression was analyzed by quantitative polymerase chain reaction array. Mineralization of ECM was enhanced at 5 and 10mM MgSO4, and collagen type X mRNA (COL10A1, an ECM protein deposited during bone healing) expression was increased at 10mM MgSO4 both with and without osteogenic factors. We also confirmed the increased production of collagen type X protein by Western blotting. Next, we investigated the mechanisms of intracellular signaling by analyzing the protein production of hypoxia-inducible factor (HIF)-1α and 2α (transcription factors of COL10A1), vascular endothelial growth factor (VEGF) (activated by HIF-2α) and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α (transcription coactivator of VEGF). We observed that 10mM MgSO4 stimulation enhanced COL10A1 and VEGF expression, possibly via HIF-2α in undifferentiated hBMSCs and via PGC-1α in osteogenic cells. These data suggest possible ECM proteins and transcription factors affected by Mg(2+) that are responsible for the enhanced bone regeneration observed around degradable Mg orthopedic/craniofacial devices.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draft
                Role: ConceptualizationRole: Project administrationRole: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput Biol
                plos
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                15 September 2022
                September 2022
                : 18
                : 9
                : e1010482
                Affiliations
                [001] Helmholtz Zentrum Hereon, Institute of Metallic Biomaterials, Geesthacht, Germany
                Queensland University of Technology, AUSTRALIA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-7539-4396
                https://orcid.org/0000-0002-7562-9423
                Article
                PCOMPBIOL-D-22-00582
                10.1371/journal.pcbi.1010482
                9514629
                36108031
                19023fc2-c639-4336-8eab-05791b7cd5e9
                © 2022 Nourisa et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 April 2022
                : 11 August 2022
                Page count
                Figures: 11, Tables: 1, Pages: 23
                Funding
                Funded by: Helmholtz Zentrum Hereon
                This study is financially supported by Helmholtz Zentrum Hereon. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Developmental Biology
                Cell Differentiation
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Inflammation
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Cell Differentiation
                Osteoblast Differentiation
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Bone Remodeling
                Ossification
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Mesenchymal Stem Cells
                Research and Analysis Methods
                Simulation and Modeling
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Custom metadata
                vor-update-to-uncorrected-proof
                2022-09-27
                The data required to reproduce these findings are available to download from https://zenodo.org/record/6369939. The processed data required to reproduce these findings are available to download from https://zenodo.org/record/6369939.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article