Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
68
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Factors Influencing COVID-19 Incidence and Severity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging evidence supports a link between environmental factors—including air pollution and chemical exposures, climate, and the built environment—and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment–COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            COVID-19: consider cytokine storm syndromes and immunosuppression

            As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis

              Background The coronavirus disease 2019 (Covid-19) outbreak is evolving rapidly worldwide. Objective To evaluate the risk of serious adverse outcomes in patients with coronavirus disease 2019 (Covid-19) by stratifying the comorbidity status. Methods We analysed the data from 1590 laboratory-confirmed hospitalised patients 575 hospitals in 31 province/autonomous regions/provincial municipalities across mainland China between December 11th, 2019 and January 31st, 2020. We analyse the composite endpoints, which consisted of admission to intensive care unit, or invasive ventilation, or death. The risk of reaching to the composite endpoints was compared according to the presence and number of comorbidities. Results The mean age was 48.9 years. 686 patients (42.7%) were females. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached to the composite endpoints. 399 (25.1%) reported having at least one comorbidity. The most prevalent comorbidity was hypertension (16.9%), followed by diabetes (8.2%). 130 (8.2%) patients reported having two or more comorbidities. After adjusting for age and smoking status, COPD [hazards ratio (HR) 2.681, 95% confidence interval (95%CI) 1.424–5.048], diabetes (HR 1.59, 95%CI 1.03–2.45), hypertension (HR 1.58, 95%CI 1.07–2.32) and malignancy (HR 3.50, 95%CI 1.60–7.64) were risk factors of reaching to the composite endpoints. The HR was 1.79 (95%CI 1.16–2.77) among patients with at least one comorbidity and 2.59 (95%CI 1.61–4.17) among patients with two or more comorbidities. Conclusion Among laboratory-confirmed cases of Covid-19, patients with any comorbidity yielded poorer clinical outcomes than those without. A greater number of comorbidities also correlated with poorer clinical outcomes.
                Bookmark

                Author and article information

                Journal
                8006431
                1309
                Annu Rev Public Health
                Annu Rev Public Health
                Annual review of public health
                0163-7525
                1545-2093
                23 March 2023
                05 April 2022
                04 January 2022
                28 March 2023
                : 43
                : 271-291
                Affiliations
                [1 ]Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA;
                [2 ]Department of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA;
                [3 ]Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA;
                [4 ]Department of Earth System Science, Stanford University, Stanford, California, USA
                [5 ]Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, Colorado, USA;
                Author notes
                [∗]

                These authors shared senior authorship

                Article
                NIHMS1882050
                10.1146/annurev-publhealth-052120-101420
                10044492
                34982587
                18b9ae18-d28c-441f-bd54-63b02e922c7f

                This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information

                History
                Categories
                Article

                sars-cov-2,covid-19,air pollution,chemicals,climate,built environment

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content203

                Cited by57

                Most referenced authors3,174