Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
96
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estrogen receptor related beta is expressed in human endometrium throughout the normal menstrual cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Estrogen receptor related beta (ERRβ, ESRRB/NR3B2) is an orphan receptor that shares significant sequence homology with estrogen receptors ERα and ERβ. ERR family members are reported to exhibit constitutive transcriptional activity; however, little is known about the biological function of ERRβ. In an attempt to delineate its role, we examined expression of ERRβ in normal human endometrium, a tissue that undergoes cyclic remodelling under the influence of estrogen and progesterone.

          METHODS

          Well-characterized endometrial tissue ( n = 31), including full-thickness biopsies, was obtained from women with regular menstrual cycles. RT–PCR was used to measure mRNA encoding ERRβ, the peroxisome proliferator activated receptor gamma coactivators (PGC)-1α and β and to determine whether ERRβ splice variant mRNAs were expressed. ERRβ was immunolocalized using both single and double antibody immunohistochemistry.

          RESULTS

          Total ERRβ mRNA appeared higher in proliferative phase samples but results did not reach significance. Transcripts corresponding to the long- and short-splice variants of ERRβ as well as PGC1α and β were detected but ERRβΔ10 was absent. ERRβ protein was localized to cell nuclei within multiple endometrial cell types including the glands, stroma, endothelium and immune cells, including uterine natural killer (uNK) cells and macrophages. Fluorescent immunohistochemistry revealed that some cells co-expressed ERRβ and ERα or ERβ, for example, endothelial and uNK cells were ERRβ+/ERβ+.

          CONCLUSIONS

          ERRβ mRNA and protein are expressed in healthy human endometrium. Further studies are warranted to characterize the functional impact of ERRβ on endometrial biology.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Dissecting self-renewal in stem cells with RNA interference.

          We present an integrated approach to identify genetic mechanisms that control self-renewal in mouse embryonic stem cells. We use short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions. We focus on transcriptional regulators and identify seven genes for which shRNA-mediated depletion negatively affects self-renewal, including four genes with previously unrecognized roles in self-renewal. Perturbations of these gene products are combined with dynamic, global analyses of gene expression. Our studies suggest specific biological roles for these molecules and reveal the complexity of cell fate regulation in embryonic stem cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear hormone receptors and gene expression.

            The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocrine regulation of menstruation.

              In women, endometrial morphology and function undergo characteristic changes every menstrual cycle. These changes are crucial for perpetuation of the species and are orchestrated to prepare the endometrium for implantation of a conceptus. In the absence of pregnancy, the human endometrium is sloughed off at menstruation over a period of a few days. Tissue repair, growth, angiogenesis, differentiation, and receptivity ensue to prepare the endometrium for implantation in the next cycle. Ovarian sex steroids through interaction with different cognate nuclear receptors regulate the expression of a cascade of local factors within the endometrium that act in an autocrine/paracrine and even intracrine manner. Such interactions initiate complex events within the endometrium that are crucial for implantation and, in the absence thereof, normal menstruation. A clearer understanding of regulation of normal endometrial function will provide an insight into causes of menstrual dysfunction such as menorrhagia (heavy menstrual bleeding) and dysmenorrhea (painful periods). The molecular pathways that precipitate these pathologies remain largely undefined. Future research efforts to provide greater insight into these pathways will lead to the development of novel drugs that would target identified aberrations in expression and/or of local uterine factors that are crucial for normal endometrial function.
                Bookmark

                Author and article information

                Journal
                Hum Reprod
                humrep
                humrep
                Human Reproduction (Oxford, England)
                Oxford University Press
                0268-1161
                1460-2350
                December 2008
                4 September 2008
                4 September 2008
                : 23
                : 12
                : 2782-2790
                Affiliations
                [1 ]MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology , The Queen’s Medical Research Institute , 47 Little France Crescent, Edinburgh EH16 4TJ, UK
                [2 ]Division of Reproductive and Developmental Sciences, University of Edinburgh, The Queen’s Medical Research Institute , 47 Little France Crescent, Edinburgh EH16 4TJ, UK
                Author notes
                [3 ]Correspondence address. Tel: +44-131-242-6388; E-mail: p.saunders@ 123456ed.ac.uk or p.saunders@ 123456hrsu.mrc.ac.uk
                Article
                den298
                10.1093/humrep/den298
                2583942
                18775884
                17faf4b1-4459-490d-83a7-506b91bceb46
                © The Author 2008. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed: the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given: if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative word this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 5 March 2008
                : 10 June 2008
                : 10 July 2008
                Categories
                Original Articles
                Reproductive Endocrinology

                Human biology
                macrophage,uterine natural killer cell,peroxisome proliferator-activated receptor gamma coactivator,endometrium,estrogen receptor

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content494

                Cited by18

                Most referenced authors717