1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stretchable Transistor‐Structured Artificial Synapses for Neuromorphic Electronics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stretchable synaptic transistors, a core technology in neuromorphic electronics, have functions and structures similar to biological synapses and can concurrently transmit signals and learn. Stretchable synaptic transistors are usually soft and stretchy and can accommodate various mechanical deformations, which presents significant prospects in soft machines, electronic skin, human–brain interfaces, and wearable electronics. Considerable efforts have been devoted to developing stretchable synaptic transistors to implement electronic device neuromorphic functions, and remarkable advances have been achieved. Here, this review introduces the basic concept of artificial synaptic transistors and summarizes the recent progress in device structures, functional‐layer materials, and fabrication processes. Classical stretchable synaptic transistors, including electric double‐layer synaptic transistors, electrochemical synaptic transistors, and optoelectronic synaptic transistors, as well as the applications of stretchable synaptic transistors in light‐sensory systems, tactile‐sensory systems, and multisensory artificial‐nerves systems, are discussed. Finally, the current challenges and potential directions of stretchable synaptic transistors are analyzed. This review presents a detailed introduction to the recent progress in stretchable synaptic transistors from basic concept to applications, providing a reference for the development of stretchable synaptic transistors in the future.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

          Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs. These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A quantitative description of membrane current and its application to conduction and excitation in nerve

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From sensation to cognition.

              M. Mesulam (1998)
              Sensory information undergoes extensive associative elaboration and attentional modulation as it becomes incorporated into the texture of cognition. This process occurs along a core synaptic hierarchy which includes the primary sensory, upstream unimodal, downstream unimodal, heteromodal, paralimbic and limbic zones of the cerebral cortex. Connections from one zone to another are reciprocal and allow higher synaptic levels to exert a feedback (top-down) influence upon earlier levels of processing. Each cortical area provides a nexus for the convergence of afferents and divergence of efferents. The resultant synaptic organization supports parallel as well as serial processing, and allows each sensory event to initiate multiple cognitive and behavioural outcomes. Upstream sectors of unimodal association areas encode basic features of sensation such as colour, motion, form and pitch. More complex contents of sensory experience such as objects, faces, word-forms, spatial locations and sound sequences become encoded within downstream sectors of unimodal areas by groups of coarsely tuned neurons. The highest synaptic levels of sensory-fugal processing are occupied by heteromodal, paralimbic and limbic cortices, collectively known as transmodal areas. The unique role of these areas is to bind multiple unimodal and other transmodal areas into distributed but integrated multimodal representations. Transmodal areas in the midtemporal cortex, Wernicke's area, the hippocampal-entorhinal complex and the posterior parietal cortex provide critical gateways for transforming perception into recognition, word-forms into meaning, scenes and events into experiences, and spatial locations into targets for exploration. All cognitive processes arise from analogous associative transformations of similar sets of sensory inputs. The differences in the resultant cognitive operation are determined by the anatomical and physiological properties of the transmodal node that acts as the critical gateway for the dominant transformation. Interconnected sets of transmodal nodes provide anatomical and computational epicentres for large-scale neurocognitive networks. In keeping with the principles of selectively distributed processing, each epicentre of a large-scale network displays a relative specialization for a specific behavioural component of its principal neurospychological domain. The destruction of transmodal epicentres causes global impairments such as multimodal anomia, neglect and amnesia, whereas their selective disconnection from relevant unimodal areas elicits modality-specific impairments such as prosopagnosia, pure word blindness and category-specific anomias. The human brain contains at least five anatomically distinct networks. The network for spatial awareness is based on transmodal epicentres in the posterior parietal cortex and the frontal eye fields; the language network on epicentres in Wernicke's and Broca's areas; the explicit memory/emotion network on epicentres in the hippocampal-entorhinal complex and the amygdala; the face-object recognition network on epicentres in the midtemporal and temporopolar cortices; and the working memory-executive function network on epicentres in the lateral prefrontal cortex and perhaps the posterior parietal cortex. Individual sensory modalities give rise to streams of processing directed to transmodal nodes belonging to each of these networks. The fidelity of sensory channels is actively protected through approximately four synaptic levels of sensory-fugal processing. The modality-specific cortices at these four synaptic levels encode the most veridical representations of experience. Attentional, motivational and emotional modulations, including those related to working memory, novelty-seeking and mental imagery, become increasingly more pronounced within downstream components of unimodal areas, where they help to create a highly edited subjective version of the world. (ABSTRACT TRUNCATED)
                Bookmark

                Author and article information

                Contributors
                Journal
                Small
                Small
                Wiley
                1613-6810
                1613-6829
                May 2023
                February 07 2023
                May 2023
                : 19
                : 18
                Affiliations
                [1 ] School of Science Anhui Agricultural University Hefei 230036 China
                [2 ] Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Department of Materials Science Fudan University Shanghai 200433 China
                [3 ] School of Information & Computer Anhui Agricultural University Hefei 230036 China
                [4 ] Institute of Optoelectronic Display National & Local United Engineering Lab of Flat Panel Display Technology Fuzhou University Fuzhou 350002 China
                [5 ] Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350100 China
                [6 ] National Key Laboratory of Integrated Circuit Chips and Systems Zhangjiang Fudan International Innovation Center Fudan University Shanghai 200433 China
                Article
                10.1002/smll.202205395
                17bf932c-b4fd-4405-a0ba-b88d7b2406bf
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article