22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of Callogenesis, Organogenesis, and Embryogenesis in Non-Meristematic Explants of Bleeding Heart and Evaluation of Chemical Diversity of Key Metabolites from Callus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lamprocapnos spectabilis (L.) Fukuhara is a perennial plant species valued in the horticultural, cosmetic, and pharmaceutical markets. To date, however, there were no studies on tissue culture systems in this species when adjusted from non-meristematic explants. The aim of this study is to induce callogenesis, organogenesis, and somatic embryogenesis in non-meristematic explants of Lamprocapnos spectabilis ‘Alba’ cultured in various media and to analyze the chemical diversity of the produced callus. Leaf, petiole, and internode explants were cultured on the modified Murashige and Skoog (MS) medium fortified with various combinations and concentrations of 6-benzyladenine (BA), indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorphenoxyacetic acid (2,4-D), and picloram (PIC). After 10 weeks of culturing, the morphogenetic response of explants was evaluated and the concentration of chlorophylls, carotenoids, anthocyanins, and polyphenols in callus was analyzed. There was no influence of explant type on the callogenesis efficiency (62.1–65.3%). The highest fresh weight of callus was produced on leaf explants in the presence of 2,4-D or PIC. In contrast, the highest share of dry weight was found in internode-derived calli and cultured on IAA-supplemented medium (up to 30.8%). Only 2.5% of all explants regenerated adventitious shoots, while rhizogenesis was reported in 4.5% of explants. Somatic embryos were produced indirectly by 0% to 100% of explants, depending on the culture medium and explant type. The highest mean number of embryos (11.4 per explant) was found on petioles cultured in the MS medium with 0.5 mg·L −1 BA and 1.0 mg·L −1 PIC. Calli cultured in media with NAA usually contained a higher content of primary and secondary metabolites. There was also a significant impact of explant type on the content of anthocyanins, polyphenols, and carotenoids in callus. Further studies should focus on the elicitation of metabolites production in callus culture systems of the bleeding heart.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Current approaches toward production of secondary plant metabolites

          Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why plants need more than one type of auxin.

              The versatile functionality and physiological importance of the phytohormone auxin is a major focus of attention in contemporary plant science. Recent studies have substantially contributed to our understanding of the molecular mechanisms underlying the physiological role of auxin in plant development. The mechanism of auxin action includes both fast responses not involving gene expression, possibly mediated by Auxin Binding Protein 1 (ABP1), and slower responses requiring auxin-regulated gene expression mediated by F-box proteins. These two mechanisms of action have been described to varying degrees for the major endogenous auxin indole-3-acetic acid (IAA) and for the synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA). However, in addition to IAA, plants synthesize three other compounds that are commonly regarded as "endogenous auxins", namely, 4-chloroindole-3-acetic acid (4-Cl-IAA), indole-3-butyric acid (IBA) and phenylacetic acid (PAA). Although a spectrum of auxinic effects has been identified for all these as well as several other endogenous compounds, we remain largely ignorant of many aspects of their mechanisms of action and the extent to which they contribute to auxin-regulated plant development. Here, we briefly summarize the action of IBA, 4-Cl-IAA and PAA, and discuss the extent to which their action overlaps with that of IAA or results from their metabolic conversions to IAA. Other possible pathways for their action are considered. We present a scheme for homeostatic regulation of IAA levels that embraces other endogenous auxins in terms of the described mechanism of auxin action including its receptor and downstream signal transduction events. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                13 August 2020
                August 2020
                : 21
                : 16
                : 5826
                Affiliations
                Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology in Bydgoszcz, Bernardyńska 6, 85-029 Bydgoszcz, Poland; alicja.tymoszuk@ 123456utp.edu.pl
                Author notes
                [* ]Correspondence: dkulus@ 123456gmail.com ; Tel.: +48-52-374-95-36
                Author information
                https://orcid.org/0000-0001-5826-6950
                https://orcid.org/0000-0001-5399-9530
                Article
                ijms-21-05826
                10.3390/ijms21165826
                7461564
                32823732
                17078d5d-0fb2-424c-8a72-665b2e1e30c3
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 July 2020
                : 11 August 2020
                Categories
                Article

                Molecular biology
                anthocyanins,auxins,carotenoids,chlorophylls,cytokinins,polyphenols,spectral assay
                Molecular biology
                anthocyanins, auxins, carotenoids, chlorophylls, cytokinins, polyphenols, spectral assay

                Comments

                Comment on this article