10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering.

          Statement of Significance

          Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogels in regenerative medicine.

          Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular interactions and signaling in cartilage development.

            The long bones of the developing skeleton, such as those of the limb, arise from the process of endochondral ossification, where cartilage serves as the initial anlage element and is later replaced by bone. One of the earliest events of embryonic limb development is cellular condensation, whereby pre-cartilage mesenchymal cells aggregate as a result of specific cell-cell interactions, a requisite step in the chondrogenic pathway. In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken. Topics reviewed include limb initiation and axial induction, mesenchymal condensation and its regulation by various adhesion molecules, and regulation of chondrocyte differentiation and limb patterning. The complexity of limb development is exemplified by the involvement of multiple growth factors and morphogens such as Wnts, transforming growth factor-beta and fibroblast growth factors, as well as condensation events mediated by both cell-cell (neural cadherin and neural cell adhesion molecule) and cell-matrix adhesion (fibronectin, proteoglycans and collagens), as well as numerous intracellular signaling pathways transduced by integrins, mitogen activated protein kinases, protein kinase C, lipid metabolites and cyclic adenosine monophosphate. Furthermore, information pertaining to limb patterning and the functional importance of Hox genes and various other signaling molecules such as radical fringe, engrailed, Sox-9, and the Hedgehog family is reviewed. The exquisite three-dimensional structure of the vertebrate limb represents the culmination of these highly orchestrated and strictly regulated events. Understanding the development of cartilage should provide insights into mechanisms underlying the biology of both normal and pathologic (e.g. osteoarthritis) adult cartilage. Copyright 2000 OsteoArthritis Research Society International.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Articular cartilage injuries.

              The acute and repetitive impact and torsional joint loading that occurs during participation in sports can damage articular surfaces causing pain, joint dysfunction, and effusions. In some instances, this articular surface damage leads to progressive joint degeneration. Three classes of chondral and osteochondral injuries can be identified based on the type of tissue damage and the repair response: (1) damage to the joint surface that does not cause visible mechanical disruption of the articular surface, but does cause chondral damage and may cause subchondral bone injury; (2) mechanical disruption of the articular surface limited to articular cartilage; and (3) mechanical disruption of articular cartilage and subchondral bone. In most instances, joints can repair damage that does not disrupt the articular surface if they are protected from additional injury. Mechanical disruption of articular cartilage stimulates chondrocyte synthetic activity, but it rarely results in repair of the injury. Disruption of subchondral bone stimulates chondral and bony repair, but it rarely restores an articular surface that duplicates the biologic and mechanical properties of normal articular cartilage. In selected patients, surgeons have used operative treatments including penetrating subchondral bone, soft tissue grafts, and cell transplants and osteochondral autografts and allografts to restore articular surfaces after chondral injuries. Experimental studies indicate that use of artificial matrices and growth factors also may promote formation of a new joint surface. However, an operative treatment of an articular surface injury that will benefit patients must not just provide a new joint surface, it must produce better long-term joint function than would be expected if the injury was left untreated or treated by irrigation and debridement alone. Therefore, before selecting a treatment for a patient with an articular cartilage injury, the surgeon should define the type of injury and understand its likely natural history.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Biomater
                Acta Biomater
                Acta Biomaterialia
                Elsevier
                1742-7061
                1878-7568
                15 March 2017
                15 March 2017
                : 51
                : 75-88
                Affiliations
                [a ]Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
                [b ]Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
                [c ]Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
                [d ]CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
                [e ]Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden
                Author notes
                [* ]Corresponding author at: Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUnited Kingdom m.stevens@ 123456imperial.ac.uk
                [1]

                Current address: Department of Materials Science and Engineering & Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA.

                Article
                S1742-7061(17)30028-4
                10.1016/j.actbio.2017.01.028
                5360098
                28087486
                16453cfb-cb3c-4823-bd92-86c30265b0ec
                © 2017 Elsevier Ltd. All rights reserved.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 November 2016
                : 9 January 2017
                : 9 January 2017
                Categories
                Full Length Article

                Biomaterials & Organic materials
                hydrogel,mesenchymal stem cell,biodegradation,rgds,biomimetic material,cartilage tissue engineering

                Comments

                Comment on this article