21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cadherin-catenin adhesion complex is the key component of the intercellular adherens junction (AJ) that contributes both to tissue stability and dynamic cell movements in epithelial and nonepithelial tissues. The cadherin adhesion complex bridges neighboring cells and the actin-myosin cytoskeleton, and thereby contributes to mechanical coupling between cells which drives many morphogenetic events and tissue repair. Mechanotransduction at cadherin adhesions enables cells to sense, signal, and respond to physical changes in their environment. Central to this process is the dynamic link of the complex to actin filaments (F-actin), themselves structurally dynamic and subject to tension generated by myosin II motors. We discuss in this review recent breakthroughs in understanding molecular and cellular aspects of the organization of the core cadherin-catenin complex in adherens junctions, its association to F-actin, its mechanosensitive regulation, and dynamics.

          Abstract

          Adherens junctions, composed mainly of cadherins and catenins, are cell junctions that are linked to F-actin. Recent work has provided a deeper understanding of their organization, mechanosensitive regulation, and dynamics.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Catenin as a tension transducer that induces adherens junction development.

          Adherens junctions (AJs), which are organized by adhesion proteins and the underlying actin cytoskeleton, probably sense pulling forces from adjacent cells and modulate opposing forces to maintain tissue integrity, but the regulatory mechanism remains unknown at the molecular level. Although the possibility that alpha-catenin acts as a direct linker between the membrane and the actin cytoskeleton for AJ formation and function has been minimized, here we show that alpha-catenin recruits vinculin, another main actin-binding protein of AJs, through force-dependent changes in alpha-catenin conformation. We identified regions in the alpha-catenin molecule that are required for its force-dependent binding of vinculin by introducing mutant alpha-catenin into cells and using in vitro binding assays. Fluorescence recovery after photobleaching analysis for alpha-catenin mobility and the existence of an antibody recognizing alpha-catenin in a force-dependent manner further supported the notion that alpha-catenin is a tension transducer that translates mechanical stimuli into a chemical response, resulting in AJ development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.

            Linkage between the adherens junction (AJ) and the actin cytoskeleton is required for tissue development and homeostasis. In vivo findings indicated that the AJ proteins E-cadherin, β-catenin, and the filamentous (F)-actin binding protein αE-catenin form a minimal cadherin-catenin complex that binds directly to F-actin. Biochemical studies challenged this model because the purified cadherin-catenin complex does not bind F-actin in solution. Here, we reconciled this difference. Using an optical trap-based assay, we showed that the minimal cadherin-catenin complex formed stable bonds with an actin filament under force. Bond dissociation kinetics can be explained by a catch-bond model in which force shifts the bond from a weakly to a strongly bound state. These results may explain how the cadherin-catenin complex transduces mechanical forces at cell-cell junctions. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Planar polarized actomyosin contractile flows control epithelial junction remodelling.

              Force generation by Myosin-II motors on actin filaments drives cell and tissue morphogenesis. In epithelia, contractile forces are resisted at apical junctions by adhesive forces dependent on E-cadherin, which also transmits tension. During Drosophila embryonic germband extension, tissue elongation is driven by cell intercalation, which requires an irreversible and planar polarized remodelling of epithelial cell junctions. We investigate how cell deformations emerge from the interplay between force generation and cortical force transmission during this remodelling in Drosophila melanogaster. The shrinkage of dorsal-ventral-oriented ('vertical') junctions during this process is known to require planar polarized junctional contractility by Myosin II (refs 4, 5, 7, 12). Here we show that this shrinkage is not produced by junctional Myosin II itself, but by the polarized flow of medial actomyosin pulses towards 'vertical' junctions. This anisotropic flow is oriented by the planar polarized distribution of E-cadherin complexes, in that medial Myosin II flows towards 'vertical' junctions, which have relatively less E-cadherin than transverse junctions. Our evidence suggests that the medial flow pattern reflects equilibrium properties of force transmission and coupling to E-cadherin by α-Catenin. Thus, epithelial morphogenesis is not properly reflected by Myosin II steady state distribution but by polarized contractile actomyosin flows that emerge from interactions between E-cadherin and actomyosin networks.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harb Perspect Biol
                Cold Spring Harb Perspect Biol
                cshperspect
                cshperspect
                Cold Spring Harbor Perspectives in Biology
                Cold Spring Harbor Laboratory Press (Cold Spring Harbor, New York )
                1943-0264
                May 2017
                : 9
                : 5
                : a028738
                Affiliations
                [1 ]Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
                [2 ]Princess Margaret Cancer Centre, University Health Network, TMDT 4-902, Toronto, Ontario, Canada
                Author notes
                Article
                PMC5411698 PMC5411698 5411698 a028738
                10.1101/cshperspect.a028738
                5411698
                28096263
                1638393c-ee48-42d9-9c42-25f2c475f081
                Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved
                History
                Page count
                Pages: 18
                Categories
                008
                PERSPECTIVES
                Cell Biology

                Comments

                Comment on this article