6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthesis of 2D transition metal nitrides can be achieved by ammoniation of carbide MXenes (Mo 2CT xand V 2CT x) at elevated temperatures.

          Abstract

          MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4N 3and Ti 2N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2CT xand V 2CT xMXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2N and V 2N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2N retains the MXene structure and V 2C transforms to a mixed layered structure of trigonal V 2N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2N and V 2N are three and one order of magnitude larger than those of the Mo 2CT xand V 2CT xprecursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            2D metal carbides and nitrides (MXenes) for energy storage

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

              Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                2017
                2017
                : 9
                : 45
                : 17722-17730
                Affiliations
                [1 ]A.J. Drexel Nanomaterials Institute and Department of Materials Science & Engineering
                [2 ]Drexel University
                [3 ]Philadelphia
                [4 ]USA
                [5 ]Department of Applied Physics and Applied Mathematics
                [6 ]Columbia University
                [7 ]New York
                [8 ]Center for Functional Nanomaterials
                [9 ]Brookhaven National Laboratory
                [10 ]Upton
                [11 ]Condensed Matter Physics and Materials Science Department
                Article
                10.1039/C7NR06721F
                29134998
                14c95dee-5b54-4284-b461-8a6b6d8104ce
                © 2017

                Free to read

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article