38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The differences and similarities of the Zn electrode in both alkaline and mild electrolytes have been thoroughly clarified.

          Abstract

          Owing to the high capacity of the metallic Zn anode and intrinsically safe aqueous electrolyte, aqueous Zn-based batteries are advanced energy storage technology alternatives beyond lithium-ion batteries, providing a cost benefit, high safety, and competitive energy density. There has been a new wave of research interest across the family of Zn batteries, but fundamental understanding of the Zn electrode and its performance improvement still remain inconclusive. Based on the pH value of the electrolyte, Zn-based batteries can be divided into two types, with one adopting alkaline electrolyte and the other mild (including slightly acidic) electrolyte. As the behavior of the Zn electrode in these two distinctive systems is different, their requirements to yield excellent performance are different. In this Review, we present a comprehensive overview of the Zn electrode and its fundamentals in both systems. First, the differences and similarities of the Zn electrode in both systems are outlined. Specific attention is paid to the working principles and technical challenges. Then, Zn electrode issues and recently proposed strategies for each system are summarized and compared. Finally, a perspective on future research directions towards practical applications of aqueous Zn batteries is included.

          Related collections

          Most cited references239

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural absorption by barbule microstructures of super black bird of paradise feathers

          Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Highly reversible zinc metal anode for aqueous batteries

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              30 Years of Lithium-Ion Batteries

                Bookmark

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                November 12 2020
                2020
                : 13
                : 11
                : 3917-3949
                Affiliations
                [1 ]Institute for Superconducting and Electronic Materials
                [2 ]Australian Institute for Innovative Materials
                [3 ]School of Mechanical, Materials, Mechatronic, and Biomedical Engineering
                [4 ]Faculty of Engineering & Information Sciences
                [5 ]University of Wollongong
                [6 ]College of Chemistry
                [7 ]Zhengzhou University
                [8 ]Zhengzhou 450001
                [9 ]China
                Article
                10.1039/D0EE02162H
                14950368-9d4e-434c-8638-551e28f18139
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content203

                Cited by250

                Most referenced authors9,906