15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Four direct measurements of the fine-structure constant 13 billion years ago

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Observations of the redshift z=7.085 quasar J1120+0641 have been used to search for variations of the fine structure constant, alpha, over the redshift range 5.5 to 7.1. Observations at z=7.1 probe the physics of the universe when it was only 0.8 billion years old. These are the most distant direct measurements of alpha to date and the first measurements made with a near-IR spectrograph. A new AI analysis method has been employed. Four measurements from the X-SHOOTER spectrograph on the European Southern Observatory's Very Large Telescope (VLT) directly constrain any changes in alpha relative to the value measured on Earth (alpha_0). The weighted mean strength of the electromagnetic force over this redshift range in this location in the universe is da/a = (alpha_z - alpha_0)/alpha_0 = (-2.18 +/- 7.27) X 10^{-5}, i.e. we find no evidence for a temporal change from the 4 new very high redshift measurements. When the 4 new measurements are combined with a large existing sample of lower redshift measurements, a new limit on possible spatial variation of da/a is marginally preferred over a no-variation model at the 3.7 sigma level.

          Related collections

          Author and article information

          Journal
          17 March 2020
          Article
          2003.07627
          14547e3a-c07a-47f4-a25a-4aad0af7fb48

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Accepted for publication in Science Advances
          astro-ph.CO astro-ph.GA gr-qc

          Cosmology & Extragalactic astrophysics,General relativity & Quantum cosmology,Galaxy astrophysics

          Comments

          Comment on this article