14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SVIM: structural variant identification using mapped long reads

      research-article
      ,
      Bioinformatics
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation

          Structural variants are defined as genomic variants larger than 50 bp. They have been shown to affect more bases in any given genome than single-nucleotide polymorphisms or small insertions and deletions. Additionally, they have great impact on human phenotype and diversity and have been linked to numerous diseases. Due to their size and association with repeats, they are difficult to detect by shotgun sequencing, especially when based on short reads. Long read, single-molecule sequencing technologies like those offered by Pacific Biosciences or Oxford Nanopore Technologies produce reads with a length of several thousand base pairs. Despite the higher error rate and sequencing cost, long-read sequencing offers many advantages for the detection of structural variants. Yet, available software tools still do not fully exploit the possibilities.

          Results

          We present SVIM, a tool for the sensitive detection and precise characterization of structural variants from long-read data. SVIM consists of three components for the collection, clustering and combination of structural variant signatures from read alignments. It discriminates five different variant classes including similar types, such as tandem and interspersed duplications and novel element insertions. SVIM is unique in its capability of extracting both the genomic origin and destination of duplications. It compares favorably with existing tools in evaluations on simulated data and real datasets from Pacific Biosciences and Nanopore sequencing machines.

          Availability and implementation

          The source code and executables of SVIM are available on Github: github.com/eldariont/svim. SVIM has been implemented in Python 3 and published on bioconda and the Python Package Index.

          Supplementary information

          Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms underlying structural variant formation in genomic disorders.

            With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Algorithm 457: finding all cliques of an undirected graph

                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Bioinformatics
                Bioinformatics
                bioinformatics
                Bioinformatics
                Oxford University Press
                1367-4803
                1367-4811
                01 September 2019
                21 January 2019
                21 January 2019
                : 35
                : 17
                : 2907-2915
                Affiliations
                Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics , Berlin, Germany
                Author notes
                To whom correspondence should be addressed. E-mail: vingron@ 123456molgen.mpg.de
                Author information
                http://orcid.org/0000-0001-8346-9565
                Article
                btz041
                10.1093/bioinformatics/btz041
                6735718
                30668829
                144068ab-3572-46a1-8ba6-f0f6a4d5bef7
                © The Author(s) 2019. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 July 2018
                : 04 January 2019
                : 22 January 2019
                Page count
                Pages: 9
                Funding
                Funded by: International Max Planck Research School for Computational Biology and Scientific Computing
                Categories
                Original Papers
                Genome Analysis

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article