19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review on carbon nanotubes in biosensor devices and their applications in medicine

      1 , 1 , 1 , 2 , 3 , 1
      Nanocomposites
      Informa UK Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.

          It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-assisted dispersion and separation of carbon nanotubes.

            Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential environmental impact of engineered nanomaterials.

              With the increased presence of nanomaterials in commercial products, a growing public debate is emerging on whether the environmental and social costs of nanotechnology outweigh its many benefits. To date, few studies have investigated the toxicological and environmental effects of direct and indirect exposure to nanomaterials and no clear guidelines exist to quantify these effects.
                Bookmark

                Author and article information

                Journal
                Nanocomposites
                Nanocomposites
                Informa UK Limited
                2055-0324
                2055-0332
                September 22 2018
                April 03 2018
                September 22 2018
                April 03 2018
                : 4
                : 2
                : 36-57
                Affiliations
                [1 ] Department of Mechanical Engineering, NUS Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore;
                [2 ] Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India;
                [3 ] Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
                Article
                10.1080/20550324.2018.1478765
                142b723b-1477-4481-a664-9c56b9952ba4
                © 2018

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article