5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA HOXA-AS3 promotes gastric cancer progression by regulating miR-29a-3p/LTβR and activating NF-κB signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gastric cancer (GC) is among the most common and deadliest cancers globally. Many long non-coding RNAs (lncRNAs) are key regulators of GC pathogenesis. This study aimed to define the role of HOXA-AS3 in this oncogenic context.

          Methods

          Levels of HOXA-AS3 expression in GC were quantified via qPCR. The effects of HOXA-AS3 knockdown on GC cells function were evaluated in vitro using colony formation assays, wound healing assays and transwell assays. Subcutaneous xenograft and tail vein injection tumor model systems were generated in nude mice to assess the effects of this lncRNA in vivo. The localization of HOXA-AS3 within cells was confirmed by subcellular fractionation, and predicted microRNA (miRNA) targets of this lncRNA and its ability to modulate downstream NF-κB signaling in GC cells were evaluated via luciferase-reporter assays, immunofluorescent staining, and western blotting.

          Results

          GC cells and tissues exhibited significant HOXA-AS3 upregulation ( P < 0.05), and the levels of this lncRNA were found to be correlated with tumor size, lymph node status, invasion depth, and Helicobacter pylori infection status. Knocking down HOXA-AS3 disrupted GC cell proliferation, migration, and invasion in vitro and tumor metastasis in vivo . At a mechanistic level, we found that HOXA-AS3 was able to sequester miR-29a-3p, thereby regulating the expression of LTβR and modulating NF-κB signaling in GC.

          Conclusion

          HOXA-AS3/miR-29a-3p/LTβR/NF-κB regulatory axis contributes to the progression of GC, thereby offering novel target for the prognosis and treatment of GC.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and functions of long noncoding RNAs.

            RNA is not only a messenger operating between DNA and protein. Transcription of essentially the entire eukaryotic genome generates a myriad of non-protein-coding RNA species that show complex overlapping patterns of expression and regulation. Although long noncoding RNAs (lncRNAs) are among the least well-understood of these transcript species, they cannot all be dismissed as merely transcriptional "noise." Here, we review the evolution of lncRNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The rise and fall of Hox gene clusters.

              Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.
                Bookmark

                Author and article information

                Contributors
                maoqsh@ntu.edu.cn
                fengying7017@ntu.edu.cn
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                18 February 2021
                18 February 2021
                2021
                : 21
                : 118
                Affiliations
                [1 ]GRID grid.440642.0, ISNI 0000 0004 0644 5481, Department of Gastrointestinal Surgery, , Affiliated Hospital of Nantong University, ; Nantong, China
                [2 ]Department of General Surgery, Rudong Third People’s Hospital, Rudong, China
                [3 ]GRID grid.440642.0, ISNI 0000 0004 0644 5481, Research Center of Clinical Medicine, , Affiliated Hospital of Nantong University, ; Nantong, China
                Author information
                http://orcid.org/0000-0002-1175-2051
                Article
                1827
                10.1186/s12935-021-01827-w
                7890634
                33602223
                13cf78e0-3013-447e-a54c-b4fbd34fe514
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 December 2020
                : 10 February 2021
                Categories
                Primary Research
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                hoxa-as3,gastric cancer,mir-29a-3p,ltβr,nf-κb
                Oncology & Radiotherapy
                hoxa-as3, gastric cancer, mir-29a-3p, ltβr, nf-κb

                Comments

                Comment on this article