6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasitic Plants—Potential Vectors of Phytopathogens

      , , , , ,
      Pathogens
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          The Top 10 fungal pathogens in molecular plant pathology.

          The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Top 10 plant pathogenic bacteria in molecular plant pathology.

            Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. © 2012 The Authors. Molecular Plant Pathology © 2012 BSPP and Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Top 10 plant viruses in molecular plant pathology.

              Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                PATHCD
                Pathogens
                Pathogens
                MDPI AG
                2076-0817
                June 2024
                June 07 2024
                : 13
                : 6
                : 484
                Article
                10.3390/pathogens13060484
                11207070
                38921782
                13c9f6b1-27a8-4b1e-aca8-33a344044bef
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article