10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The inevitability of arbuscular mycorrhiza for sustainability in organic agriculture—A critical review

      ,
      Frontiers in Sustainable Food Systems
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The arbuscular mycorrhizal fungi (AMF) are significant fertility-promoting microbes in soils. They enable soil fertility, soil-health and boost crop productivity. There are generalist and specialist groups among AMF in natural soils. Optimized use of specific AMF concerning crops and soils can improve agricultural sustainability. Thus, AMF is becoming an inevitable biological tool for improving crop productivity and soil health. Especially in the context of chemicalized agriculture undermining the sustainability of food security, safety, and human and ecosystem health, alternative agricultural means have become inevitable. Therefore, AMF has become essential in nature-friendly, organic agriculture. Of such farm fields, natural biological activity is enhanced to sustain soil fertility. Crops show increased innate immunity against pests and diseases in many such systems. Moreover, ecosystems remain healthy, and the soil is teeming with life in such farms. The primary goal of the review was a thorough critical analysis of the literature on AMF in organic agriculture to assess its efficiency as an ecotechnological tool in sustainable agricultural productivity. The novelty is that this is the first comprehensive review of literature on AMF concerning all aspects of organic agriculture. A vital systematic approach to the exhaustive literature collected using regular databases on the theme is followed for synthesizing the review. The review revealed the essentiality of utilizing specific mycorrhizal species, individually or in consortia, in diverse environmental settings to ensure sustainable organic crop production. However, for the exact usage of specific AMF in sustainable organic agriculture, extensive exploration of them in traditional pockets of specific crop cultivations of both chemical and organic fields and wild environments is required. Moreover, intensive experimentations are also necessary to assess them individually, in combinations, and associated with diverse beneficial soil bacteria.

          Related collections

          Most cited references231

          • Record: found
          • Abstract: found
          • Article: not found

          Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots

          Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harboured a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2=0.366; P<0.0001) between agricultural intensification and root fungal network connectivity. The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance

            Abiotic stresses hamper plant growth and productivity. Climate change and agricultural malpractices like excessive use of fertilizers and pesticides have aggravated the effects of abiotic stresses on crop productivity and degraded the ecosystem. There is an urgent need for environment-friendly management techniques such as the use of arbuscular mycorrhizal fungi (AMF) for enhancing crop productivity. AMF are commonly known as bio-fertilizers. Moreover, it is widely believed that the inoculation of AMF provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals, and extreme temperatures. AMF may both assist host plants in the up-regulation of tolerance mechanisms and prevent the down-regulation of key metabolic pathways. AMF, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AMF as a bio-fertilizer can potentially strengthen plants’ adaptability to changing environment. Thus, further research focusing on the AMF-mediated promotion of crop quality and productivity is needed. The present review provides a comprehensive up-to-date knowledge on AMF and their influence on host plants at various growth stages, their advantages and applications, and consequently the importance of the relationships of different plant nutrients with AMF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Pesticide residues in European agricultural soils – A hidden reality unfolded

              Pesticide use is a major foundation of the agricultural intensification observed over the last few decades. As a result, soil contamination by pesticide residues has become an issue of increasing concern due to some pesticides' high soil persistence and toxicity to non-target species. In this study, the distribution of 76 pesticide residues was evaluated in 317 agricultural topsoil samples from across the European Union. The soils were collected in 2015 and originated from 11 EU Member States and 6 main cropping systems. Over 80% of the tested soils contained pesticide residues (25% of samples had 1 residue, 58% of samples had mixtures of two or more residues), in a total of 166 different pesticide combinations. Glyphosate and its metabolite AMPA, DDTs (DDT and its metabolites) and the broad-spectrum fungicides boscalid, epoxiconazole and tebuconazole were the compounds most frequently found in soil samples and the compounds found at the highest concentrations. These compounds occasionally exceeded their predicted environmental concentrations in soil but were below the respective toxic endpoints for standard in-soil organisms. Maximum individual pesticide content assessed in a soil sample was 2.05 mg kg-1 while maximum total pesticide content was 2.87 mg kg-1. This study reveals that the presence of mixtures of pesticide residues in soils are the rule rather than the exception, indicating that environmental risk assessment procedures should be adapted accordingly to minimize related risks to soil life and beyond. This information can be used to implement monitoring programs for pesticide residues in soil and to trigger toxicity assessments of mixtures of pesticide residues on a wider range of soil species in order to perform more comprehensive and accurate risk assessments.
                Bookmark

                Author and article information

                Journal
                Frontiers in Sustainable Food Systems
                Front. Sustain. Food Syst.
                Frontiers Media SA
                2571-581X
                February 24 2023
                February 24 2023
                : 7
                Article
                10.3389/fsufs.2023.1124688
                130b99ff-e015-4180-8690-1bdef87ce47c
                © 2023

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article