60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and Epigenetic Signatures in Human Hepatocellular Carcinoma: A Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is the third most common cause of cancer deaths worldwide, and the incidence of this fatal disease is still on rise. The majority of HCCs emerge in the background of a chronic liver disease, such as chronic hepatitis and liver cirrhosis. The current understanding is that majority of HCCs evolve as a consequence of chronic inflammation and due to the presence of infection with hepatitis viruses. These underlying pathogenic stimuli subsequently induce a spectrum of genetic and epigenetic alterations in several cancer-related genes, which are involved in cell-cycle regulation, cell growth and adhesion. Such widespread genomic alterations cause disruption of normal cellular signaling and finally lead to the acquisition of a malignant phenotype in HCC. In general, the type of gene alterations, such as point mutations, deletion of chromosomal regions and abnormal methylation of gene promoters differ according to the individual targeted gene. In HCC, incidence of genetic alterations is relatively rare and is limited to a subset of few cancer-specific genes, such as the tumor suppressor p53, RB genes and oncogenes such as the CTNNB1. In contrast, epigenetic changes that involve aberrant methylation of genes and other post-transcriptional histone modifications occur far more frequently, and some of these epigenetic alterations are now being exploited for the development of molecular diagnostic signatures for HCC. In addition, recent findings of unique microRNA expression profiles also provide an evidence for the existence of novel mechanisms for gene expression regulation in HCC. In this review article, we will review the current state of knowledge on the activation of various oncogenic pathways and the inactivation of tumor suppressor pathways in HCC that result in the disruption of cancer-related gene function. In addition, we will specifically emphasize the clinical implication of some of these genetic and epigenetic alterations in the management of hepatocarcinogenesis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients.

          Previous studies suggested that one or more genes on chromosome 5q21 are responsible for the inheritance of familial adenomatous polyposis (FAP) and Gardner's syndrome (GS), and contribute to tumor development in patients with noninherited forms of colorectal cancer. Two genes on 5q21 that are tightly linked to FAP (MCC and APC) were found to be somatically altered in tumors from sporadic colorectal cancer patients. One of the genes (APC) was also found to be altered by point mutation in the germ line of FAP and GS patients. These data suggest that more than one gene on chromosome 5q21 may contribute to colorectal neoplasia, and that mutations of the APC gene can cause both FAP and GS. The identification of these genes should aid in understanding the pathogenesis of colorectal neoplasia and in the diagnosis and counseling of patients with inherited predispositions to colorectal cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Awakening guardian angels: drugging the p53 pathway.

            Currently, around 11 million people are living with a tumour that contains an inactivating mutation of TP53 (the human gene that encodes p53) and another 11 million have tumours in which the p53 pathway is partially abrogated through the inactivation of other signalling or effector components. The p53 pathway is therefore a prime target for new cancer drug development, and several original approaches to drug discovery that could have wide applications to drug development are being used. In one approach, molecules that activate p53 by blocking protein-protein interactions with MDM2 are in early clinical development. Remarkable progress has also been made in the development of p53-binding molecules that can rescue the function of certain p53 mutants. Finally, cell-based assays are being used to discover compounds that exploit the p53 pathway by either seeking targets and compounds that show synthetic lethality with TP53 mutations or by looking for non-genotoxic activators of the p53 response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA expression, survival, and response to interferon in liver cancer.

              Hepatocellular carcinoma is a common and aggressive cancer that occurs mainly in men. We examined microRNA expression patterns, survival, and response to interferon alfa in both men and women with the disease. We analyzed three independent cohorts that included a total of 455 patients with hepatocellular carcinoma who had undergone radical tumor resection between 1999 and 2003. MicroRNA-expression profiling was performed in a cohort of 241 patients with hepatocellular carcinoma to identify tumor-related microRNAs and determine their association with survival in men and women. In addition, to validate our findings, we used quantitative reverse-transcriptase-polymerase-chain-reaction assays to measure microRNAs and assess their association with survival and response to therapy with interferon alfa in 214 patients from two independent, prospective, randomized, controlled trials of adjuvant interferon therapy. In patients with hepatocellular carcinoma, the expression of miR-26a and miR-26b in nontumor liver tissue was higher in women than in men. Tumors had reduced levels of miR-26 expression, as compared with paired noncancerous tissues, which indicated that the level of miR-26 expression was also associated with hepatocellular carcinoma. Moreover, tumors with reduced miR-26 expression had a distinct transcriptomic pattern, and analyses of gene networks revealed that activation of signaling pathways between nuclear factor kappaB and interleukin-6 might play a role in tumor development. Patients whose tumors had low miR-26 expression had shorter overall survival but a better response to interferon therapy than did patients whose tumors had high expression of the microRNA. The expression patterns of microRNAs in liver tissue differ between men and women with hepatocellular carcinoma. The miR-26 expression status of such patients is associated with survival and response to adjuvant therapy with interferon alfa. 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Curr Genomics
                CG
                Current Genomics
                Bentham Science Publishers Ltd
                1389-2029
                1875-5488
                April 2011
                : 12
                : 2
                : 130-137
                Affiliations
                [1 ]Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
                [2 ]Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Centre, Dallas, TX 75246, USA
                Author notes
                [* ]Address correspondence to this author at the Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Tel: +81-75-751-3171; Fax: +81-75-751-4303; E-mail: naoshi@ 123456kuhp.kyoto-u.ac.jp
                Article
                CG-12-130
                10.2174/138920211795564359
                3129047
                21966251
                11e52cb3-4595-4f70-9a1e-3c688db551c5
                ©2011 Bentham Science Publishers Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2010
                : 4 January 2011
                : 18 January 2011
                Categories
                Article

                Genetics
                mutation,oncogenic pathway,hepatocellular carcinoma,oncogene,dna methylation,tumor suppressor gene.

                Comments

                Comment on this article