34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatocellular carcinoma: old friends and new tricks

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and a leading cause of cancer-related deaths worldwide. Ninety percent of HCC cases arise from cirrhosis, during which liver cells undergo chronic cycles of necrosis and regeneration. The complex genomic landscape of HCC has been extensively investigated to draw correlations between recurrently mutated pathways and patient prognosis. However, our limited success with targeted therapy shows that knowing the presence of somatic mutations alone is insufficient for us to gauge the full spectrum of their functional consequences in the context of tumor evolution. In addition, the current molecular classification of HCC offers little information on the relationship between the molecular features and immunological properties of HCC tumors and their immune microenvironment. This review introduces current challenges and advancements made in HCC surveillance, diagnosis, and treatment. We also discuss the suite of HCC-associated genetic changes and describe recent studies that provide evidence for an evolving functional model and its implications for understanding and targeting HCC progression.

          Liver cancer: Call to explore evolving mutations within tumors

          Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide, but despite advances in understanding disease genetics, successful targeted therapies are limited. Eunsun Kim at Stanford University and Patrick Viatour at the University of Pennsylvania reviewed current HCC surveillance, diagnostics and treatments, focusing on genetic changes and their influence on disease progression. Novel methods for HCC diagnosis, including analysis of cancer-derived materials in blood, will complement existing diagnostics and help identify more early stage cases. Extensive studies of HCC tumor ecosystems will inform the development of novel immunotherapies. More studies involving genetic sequencing of mutations within tumors over time should further advance our understanding of HCC progression and help explain varying treatment responses.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

            Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65) with highest prevalence in the Middle East and South America and lowest in Africa. Metabolic comorbidities associated with NAFLD included obesity (51.34%; 95% CI: 41.38-61.20), type 2 diabetes (22.51%; 95% CI: 17.92-27.89), hyperlipidemia (69.16%; 95% CI: 49.91-83.46%), hypertension (39.34%; 95% CI: 33.15-45.88), and metabolic syndrome (42.54%; 95% CI: 30.06-56.05). Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma

                Bookmark

                Author and article information

                Contributors
                eunsun@stanford.edu
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                2 December 2020
                2 December 2020
                December 2020
                : 52
                : 12
                : 1898-1907
                Affiliations
                [1 ]GRID grid.168010.e, ISNI 0000000419368956, Stanford Cancer Institute, , Stanford University, ; Stanford, CA USA
                [2 ]GRID grid.239552.a, ISNI 0000 0001 0680 8770, Children’s Hospital of Philadelphia, , Center for Childhood Cancer Research, ; Philadelphia, PA USA
                [3 ]GRID grid.25879.31, ISNI 0000 0004 1936 8972, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, , University of Pennsylvania, ; Philadelphia, PA USA
                Author information
                http://orcid.org/0000-0001-5909-8768
                Article
                527
                10.1038/s12276-020-00527-1
                8080814
                33268834
                0a858d98-52fc-40ba-b498-85cf633ee777
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2020
                : 28 September 2020
                : 13 October 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100001445, Alex’s Lemonade Stand Foundation for Childhood Cancer (Alex’s Lemonade Stand Foundation);
                Funded by: FundRef https://doi.org/10.13039/100000048, American Cancer Society (American Cancer Society, Inc.);
                Award ID: RSG-16-233-01-TBE
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                Molecular medicine
                liver cancer,tumour immunology,cancer genomics
                Molecular medicine
                liver cancer, tumour immunology, cancer genomics

                Comments

                Comment on this article

                scite_
                227
                1
                161
                0
                Smart Citations
                227
                1
                161
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content689

                Cited by106

                Most referenced authors4,095