56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Progression From Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart : Structural Deterioration and Compensatory Mechanisms

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background— The progression of compensated hypertrophy to heart failure (HF) is still debated. We investigated patients with isolated valvular aortic stenosis and differing degrees of left ventricular (LV) systolic dysfunction to test the hypothesis that structural remodeling, as well as cell death, contributes to the transition to HF.

          Methods and Results— Structural alterations were studied in LV myectomies from 3 groups of patients (group 1: ejection fraction [EF] >50%, n=12; group 2: EF 30% to 50%, n=12; group 3: EF <30%, n=10) undergoing aortic valve replacement. Control patients were patients with mitral valve stenosis but normal LV (n=6). Myocyte hypertrophy was accompanied by increased nuclear DNA and Sc-35 (splicing factor) content. ACE and TGF-β 1 were upregulated correlating with fibrosis, which increased 2.3-, 2.2-, and 3.2-fold over control in the 3 groups. Myocyte degeneration increased 10, 22, and 32 times over control. A significant correlation exists between EF and myocyte degeneration or fibrosis. Ubiquitin-related autophagic cell death was 0.5‰ in control and group 1, 1.05 in group 2, and 6.05‰ in group 3. Death by oncosis was 0‰ in control, 3‰ in group 1, and increased to 5‰ (groups 2 and 3). Apoptosis was not detectable in control and group 3, but it was present at 0.02‰ in group 1 and 0.01‰ in group 2. Cardiomyocyte mitosis was never observed.

          Conclusions— These structure-function correlations confirm the hypothesis that transition to HF occurs by fibrosis and myocyte degeneration partially compensated by hypertrophy involving DNA synthesis and transcription. Cell loss, mainly by autophagy and oncosis, contributes significantly to the progression of LV systolic dysfunction.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction.

          Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of cardiac fibrosis by transforming growth factor-beta(1).

              The role of transforming growth factor-beta(1) (TGF-beta(1)) in the production and deposition of collagens and in the induction of gene expression in the myocardium in relation to the development of myocardial fibrosis will be discussed. Very low expression of TGF-beta(1) and collagen type I and III mRNA is seen in the normal rat heart. Both expressions are markedly increased in the infarcted heart and the levels of TGF-beta(1) mRNA precedes increases in mRNA levels for extracellular matrix (ECM) proteins, suggesting a possible role of TGF-beta(1) in remodeling processes in the myocardium. The TGF-beta(1) expression is normally only transient since continuous TGF-beta(1) overexpression seems to promote nonadaptive cardiac hypertrophy and myocardial fibrosis. In vitro, TGF-beta(1) induces an increase in collagen production and secretion and enhances the abundance of mRNA levels for collagen type I and III in rat cardiac fibroblasts in culture. TGF-beta(1) also stimulates in vivo the expression of ECM proteins and in vivo gene transfer of TGF-beta(1) can induce myocardial fibrosis. Increased myocardial TGF-beta(1) and ECM protein mRNA are found in myocardial fibrosis induced by angiotensin II infusion, by noradrenaline treatment, by isoprenaline infusion, and by long-term blockade of NO synthesis. In vivo antagonism of TGF-beta(1) by neutralizing anti-TGF-beta(1) antibodies or by proteoglycans prevents the increase in gene expression of ECM proteins and inhibits myocardial fibrosis, suggesting that the increases in matrix protein production and fibrosis are mediated by TGF-beta(1). Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                February 25 2003
                February 25 2003
                : 107
                : 7
                : 984-991
                Affiliations
                [1 ]From Kerckhoff-Clinic (S.H., M.S., E.P.B., W.-P.K.) and Max-Planck-Institute (E.A., S.K., V.P., J.S.), Bad Nauheim, Germany, and the Department of Cardiology (A.E.), Albert-Ludwigs-University, Freiburg, Germany.
                Article
                10.1161/01.CIR.0000051865.66123.B7
                12600911
                11e1fa4e-2ddb-4b52-9f39-cb6ab075b57f
                © 2003
                History

                Comments

                Comment on this article