2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pseudomonas aeruginosa Type III Secretion System Exoenzyme Effector ExoU Induces Mitochondrial Damage in a Murine Bone Marrow-Derived Macrophage Infection Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes nosocomial pneumonia, urinary tract infections, and bacteremia. A hallmark of P. aeruginosa pathogenesis is disruption of host cell function by the type III secretion system (T3SS) and its cognate exoenzyme effectors. The T3SS effector ExoU is phospholipase A 2 (PLA 2) that targets the host cell plasmalemmal membrane to induce cytolysis and is an important virulence factor that mediates immune avoidance. In addition, ExoU has been shown to subvert the host inflammatory response in a noncytolytic manner. In primary bone marrow-derived macrophages (BMDMs), P. aeruginosa infection is sensed by the nucleotide-binding domain containing leucine-rich repeats-like receptor 4 (NLRC4) inflammasome, which triggers caspase-1 activation and inflammation. ExoU transiently inhibits NLRC4 inflammasome-mediated activation of caspase-1 and its downstream target, interleukin 1β (IL-1β), to suppress activation of inflammation. In the present study, we sought to identify additional noncytolytic virulence functions for ExoU and discovered an unexpected association between ExoU, host mitochondria, and NLRC4. We show that infection of BMDMs with P. aeruginosa strains expressing ExoU elicited mitochondrial oxidative stress. In addition, mitochondria and mitochondrion-associated membrane fractions enriched from infected cells exhibited evidence of autophagy activation, indicative of damage. The observation that ExoU elicited mitochondrial stress and damage suggested that ExoU may also associate with mitochondria during infection. Indeed, ExoU phospholipase A 2 enzymatic activity was present in enriched mitochondria and mitochondrion-associated membrane fractions isolated from P. aeruginosa-infected BMDMs. Intriguingly, enriched mitochondria and mitochondrion-associated membrane fractions isolated from infected Nlrc4 homozygous knockout BMDMs displayed significantly lower levels of ExoU enzyme activity, suggesting that NLRC4 plays a role in the ExoU-mitochondrion association. These observations prompted us to assay enriched mitochondria and mitochondrion-associated membrane fractions for NLRC4, caspase-1, and IL-1β. NLRC4 and pro-caspase-1 were detected in enriched mitochondria and mitochondrion-associated membrane fractions isolated from noninfected BMDMs, and active caspase-1 and active IL-1β were detected in response to P. aeruginosa infection. Interestingly, ExoU inhibited mitochondrion-associated caspase-1 and IL-1β activation. The implications of ExoU-mediated effects on mitochondria and the NLRC4 inflammasome during P. aeruginosa infection are discussed.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.

            Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A guided tour into subcellular colocalization analysis in light microscopy.

              It is generally accepted that the functional compartmentalization of eukaryotic cells is reflected by the differential occurrence of proteins in their compartments. The location and physiological function of a protein are closely related; local information of a protein is thus crucial to understanding its role in biological processes. The visualization of proteins residing on intracellular structures by fluorescence microscopy has become a routine approach in cell biology and is increasingly used to assess their colocalization with well-characterized markers. However, image-analysis methods for colocalization studies are a field of contention and enigma. We have therefore undertaken to review the most currently used colocalization analysis methods, introducing the basic optical concepts important for image acquisition and subsequent analysis. We provide a summary of practical tips for image acquisition and treatment that should precede proper colocalization analysis. Furthermore, we discuss the application and feasibility of colocalization tools for various biological colocalization situations and discuss their respective strengths and weaknesses. We have created a novel toolbox for subcellular colocalization analysis under ImageJ, named JACoP, that integrates current global statistic methods and a novel object-based approach.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Infect Immun
                Infect Immun
                IAI
                Infection and Immunity
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0019-9567
                1098-5522
                7 February 2022
                17 March 2022
                March 2022
                17 March 2022
                : 90
                : 3
                : e00470-21
                Affiliations
                [a ] Department of Microbiology and Immunology, University of South Alabamagrid.267153.4, College of Medicine, Mobile, Alabama, USA
                [b ] Center for Lung Biology, University of South Alabamagrid.267153.4, College of Medicine, Mobile, Alabama, USA
                [c ] Mitchell Cancer Institute, University of South Alabamagrid.267153.4, College of Medicine, Mobile, Alabama, USA
                [d ] Department of Pharmcology, University of South Alabamagrid.267153.4, College of Medicine, Mobile, Alabama, USA
                [e ] Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
                Yale University School of Medicine
                Author notes

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0000-0002-0022-4800
                Article
                00470-21 iai.00470-21
                10.1128/iai.00470-21
                8929383
                35130452
                1196b4cf-0b2f-44ce-b7d7-7cb5a70554a1
                Copyright © 2022 Hardy et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 24 August 2021
                : 5 October 2021
                : 18 January 2022
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 77, Pages: 17, Words: 10627
                Funding
                Funded by: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI), FundRef https://doi.org/10.13039/100000050;
                Award ID: HL118334
                Award Recipient :
                Funded by: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI), FundRef https://doi.org/10.13039/100000050;
                Award ID: HL118334-S1
                Award Recipient :
                Categories
                Cellular Microbiology: Pathogen-Host Cell Molecular Interactions
                host-microbial-interactions, Host-Microbial Interactions
                Custom metadata
                March 2022

                Infectious disease & Microbiology
                pseudomonas aeruginosa,exou,exot,nlrc4 inflammasome,caspase-1,mitochondria,pneumonia,sepsis

                Comments

                Comment on this article