28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNA HOTTIP promotes BCL-2 expression and induces chemoresistance in small cell lung cancer by sponging miR-216a

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite progress in treatment of small cell lung cancer (SCLC), its multidrug chemoresistance and poor prognosis still remain. Recently, we globally assessed long non-coding RNAs (lncRNAs) for contributions to SCLC chemoresistance using microarray data, in vitro and in vivo assays. Here we reported that HOTTIP, encoding a lncRNA that is frequently amplified in SCLC, was associated with SCLC cell chemosensitivity, proliferation, and poor prognosis of SCLC patients. Moreover, mechanistic investigations showed that HOTTIP functioned as an oncogene in SCLC progression by binding miR-216a and abrogating its tumor-suppressive function in this setting. On the other hand, HOTTIP increased the expression of anti-apoptotic factor BCL-2, another important target gene of miR-216a, and jointly enhanced chemoresistance of SCLC by regulating BCL-2. Taken together, our study established a role for HOTTIP in SCLC progression and chemoresistance suggest its candidacy as a new diagnostic and prognostic biomarker for clinical management of SCLC.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long noncoding RNA associated-competing endogenous RNAs in gastric cancer

          Some long noncoding RNAs (lncRNAs) play important roles in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the roles of lncRNA associated-ceRNAs in oncogenesis are not fully understood. Here, based on lncRNA microarray data of gastric cancer, bioinformatic algorithm miRcode and microRNA (miRNA) targets database TarBase, we first constructed an lncRNA-miRNA-mRNA network. Then, we confirmed it by data of six types of other cancer including head and neck squamous cell carcinoma, prostate cancer, papillary thyroid carcinoma, pituitary gonadotrope tumors, ovarian cancer, and chronic lymphocytic leukemia. The results showed a clear cancer-associated ceRNA network. Eight lncRNAs (AC009499.1, GACAT1, GACAT3, H19, LINC00152, AP000288.2, FER1L4, and RP4-620F22.3) and nine miRNAs (miR-18a-5p, miR-18b-5p, miR-19a-3p, miR-20b-5p, miR-106a-5p, miR-106b-5p, miR-31-5p, miR-139-5p, and miR-195-5p) were involved. For instance, through its miRNA response elements (MREs) to compete for miR-106a-5p, lncRNA-FER1L4 regulates the expression of PTEN, RB1, RUNX1, VEGFA, CDKN1A, E2F1, HIPK3, IL-10, and PAK7. Furthermore, cellular experimental results indicated that FER1L4-small interfering RNA (siRNA) simultaneously suppressed FER1L4 and RB1 mRNA level. These results suggest that lncRNAs harbor MREs and play important roles in post-transcriptional regulation in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling.

            Chemotherapy is a reasonable alternative to cystectomy in patients with invasive and advanced bladder cancer. However, bladder cancer cells often develop drug resistance to these therapies, and ~ 50% of patients with advanced bladder cancer do not respond to chemotherapy. Recent studies have shown that long non-coding RNA (lncRNA) is involved in the development of chemoresistance. Here we investigated the role of the urothelial cancer-associated 1 (UCA1) lncRNA in cisplatin resistance during chemotherapy for bladder cancer. We showed that cisplatin-based chemotherapy results in up-regulation of UCA1 expression in patients with bladder cancer. Similarly, UCA1 levels are increased in cisplatin-resistant bladder cancer cells. Over-expression of UCA1 significantly increases the cell viability during cisplatin treatment, whereas UCA1 knockdown reduces the cell viability during cisplatin treatment. UCA1 inhibition also partially overcomes drug resistance in cisplatin-resistant T24 cells. Furthermore, we showed that UCA1 positively regulates expression of wingless-type MMTV integration site family member 6 (Wnt6) in human bladder cancer cell lines. UCA1 and Wnt6 expression is also positively correlated in vivo. Up-regulation of UCA1 activates Wnt signaling in a Wnt6-dependent manner. We finally demonstrate that UCA1 increases the cisplatin resistance of bladder cancer cells by enhancing the expression of Wnt6, and thus represents a potential target to overcome chemoresistance in bladder cancer. © 2014 FEBS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma

              Background Dysregulated long non-coding RNAs (lncRNAs) have been found to have oncogenic and/or tumor suppressive roles in the development and progression of cancer, implying their potentials as novel independent biomarkers for cancer diagnosis and prognosis. However, the prognostic significance of expression profile-based lncRNA signature for outcome prediction in patients with multiple myeloma (MM) has not yet been investigated. Methods LncRNA expression profiles of a large cohort of patients with MM were obtained and analyzed by repurposing the publically available microarray data. An lncRNA-focus risk score model was developed from the training dataset, and then validated in the testing and another two independent external datasets. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction. The biological function of prognostic lncRNAs was predicted using bioinformatics analysis. Results Four lncRNAs were identified to be significantly associated with overall survival (OS) of patients with MM in the training dataset, and were combined to develop a four-lncRNA prognostic signature to stratify patients into high-risk and low-risk groups. Patients of training dataset in the high-risk group exhibited shorter OS than those in the low-risk group (HR = 2.718, 95 % CI = 1.937-3.815, p <0.001). The similar prognostic values of four-lncRNA signature were observed in the testing dataset, entire GSE24080 dataset and another two independent external datasets. Multivariate Cox regression and stratified analysis showed that the prognostic power of four-lncRNA signature was independent of clinical features, including serum beta 2-microglobulin (Sβ2M), serum albumin (ALB) and lactate dehydrogenase (LDH). ROC analysis also demonstrated the better performance for predicting 3-year OS. Functional enrichment analysis suggested that these four lncRNAs may be involved in known genetic and epigenetic events linked to MM. Conclusions Our results demonstrated potential application of lncRNAs as novel independent biomarkers for diagnosis and prognosis in MM. These lncRNA biomarkers may contribute to the understanding of underlying molecular basis of MM. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0219-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                +(86)-(20)62782515 , guohanjing001@163.com
                +(86)-(20) 62783358 , linlangg@yahoo.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                24 January 2018
                24 January 2018
                February 2018
                : 9
                : 2
                : 85
                Affiliations
                [1 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Pathology, Zhujiang Hospital, , Southern Medical University, ; 253 Gongye Road, Guangzhou, 510282 China
                [2 ]ISNI 0000 0004 1760 3078, GRID grid.410560.6, Department of Pathology, , Guangdong Medical University, ; Dongguan, China
                [3 ]GRID grid.476868.3, Department of Radiotherapy, , Zhongshan People’s Hospital, ; Zhongshan, China
                [4 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Oncology, Zhujiang Hospital, , Southern Medical University, ; Guangzhou, China
                [5 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Pathology, Shunde Hospital, , Southern Medical University, ; Foshan, China
                [6 ]Department of Dermatology and STD, Changping Hospital, Dongguan, China
                [7 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Organ Transplantation, Zhujiang Hospital, , Southern Medical University, ; 253 Gongye Road, 510282 Guangzhou, China
                Article
                113
                10.1038/s41419-017-0113-5
                5833383
                29367594
                118ad552-23a8-414c-a31c-8dcb1a643ccb
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 May 2017
                : 14 October 2017
                : 24 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article