14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Investigations into the potential for pharmacological inhibition of the aging process and the onset of age-related disease are increasingly garnering attention. Here, we analyzed the antiaging properties of natural compounds derived from several marine bacteria in vitro and in vivo using the fission yeast Schizosaccharomyces pombe. The Pseudoalteromonas flavipulchra STILL-33 extract exhibited high antioxidant and antiglycation activities in vitro. We then characterized two antioxidant active fractions isolated from this extract. In addition, we showed that the P. flavipulchra STILL-33 extract or either of its two active fractions (Fractions 1 and 2) could extend the longevity of fission yeast. Moreover, the particular extract and two active fractions were found to induce mitochondrial activity and to delay the G1 phase of the fission yeast cell cycle, perhaps by improving the aging process. The P. flavipulchra STILL-33 extract and Fraction 1 also increased the expression of the catalase-encoding ctt1+ gene and thereby decreased the reactive oxygen species level. Structural analysis showed that Fraction 1 was dominated by l-arginine and ipriflavone, and we showed indeed that the two corresponding commercial products increase the fission yeast lifespan. As for Fraction 2 was identified as the putative structure of butamben. Together, these results should facilitate the discovery of additional antiaging compounds from P. flavipulchra and ultimately the development of novel antiaging compounds for pharmaceutical use.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Extending healthy life span--from yeast to humans.

          When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe.

            Cloning of the entire set of an organism's protein-coding open reading frames (ORFs), or 'ORFeome', is a means of connecting the genome to downstream 'omics' applications. Here we report a proteome-scale study of the fission yeast Schizosaccharomyces pombe based on cloning of the ORFeome. Taking advantage of a recombination-based cloning system, we obtained 4,910 ORFs in a form that is readily usable in various analyses. First, we evaluated ORF prediction in the fission yeast genome project by expressing each ORF tagged at the 3' terminus. Next, we determined the localization of 4,431 proteins, corresponding to approximately 90% of the fission yeast proteome, by tagging each ORF with the yellow fluorescent protein. Furthermore, using leptomycin B, an inhibitor of the nuclear export protein Crm1, we identified 285 proteins whose localization is regulated by Crm1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advanced glycation endproducts in food and their effects on health.

              Advanced glycation endproducts (AGEs) form by Maillard-reactions after initial binding of aldehydes with amines or amides in heated foods or in living organisms. The mechanisms of formation may include ionic as well as oxidative and radical pathways. The reactions may proceed within proteins to form high-molecular weight (HMW) AGEs or among small molecules to form low-molecular weight (LMW) AGEs. All free amino acids form AGEs, but lysine or arginine side chains dominate AGE formation within proteins. The analysis of AGEs in foods and body fluids is most often performed by ELISA or LC-MS; however, none of the methodologies cover all HMW and LMW AGEs. Most research is, therefore, carried out using 'representative' AGE compounds, most often N(ε)-carboxymethyl-lysine (CML). Only LMW AGEs, including peptide-bound forms, and carbonyls may be absorbed from the gut and contribute to the body burden of AGEs. Some AGEs interact with specific pro- or anti-inflammatory receptors. Most studies on the biological effects of AGEs have been carried out by administering heated foods. The pro-inflammatory and deteriorating biological effects of AGEs in these studies, therefore, need further confirmation. The current review points out several research needs in order to address important questions on AGEs in foods and health.
                Bookmark

                Author and article information

                Journal
                FEMS Yeast Research
                Oxford University Press (OUP)
                1567-1356
                1567-1364
                May 01 2020
                May 2020
                March 16 2020
                May 01 2020
                May 2020
                : 20
                : 3
                Affiliations
                [1 ]Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia
                [2 ]Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia
                [3 ]Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
                [4 ]Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
                Article
                10.1093/femsyr/foaa014
                11126417-aee8-4796-b873-11ce3079ba5b
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article