29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses.

          Author Summary

          Human metapneumovirus (HMPV) is an important human respiratory pathogen that affects all age groups worldwide. There are currently no vaccines or treatments available for HMPV, and key aspects of its life cycle remain unknown. We examined the late events of the HMPV infection cycle in human bronchial epithelial cells. Our data demonstrate that HMPV infection leads to formation of unique structures, including intercellular extensions connecting cells, and large networks of branched cell-associated filaments. Viral modulation of the cellular cytoskeleton and cellular signaling pathways are important for formation of these structures. Our results are consistent with the intercellular extensions playing a role in direct spread of virus from cell-to-cell, potentially by transfer of virus genetic material without particle formation. We also show that the HMPV phosphoprotein localizes with actin and can promote membrane deformations, suggesting a novel role in viral assembly or spread for paramyxovirus phosphoproteins.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A newly discovered human pneumovirus isolated from young children with respiratory tract disease

          From 28 young children in the Netherlands, we isolated a paramyxovirus that was identified as a tentative new member of the Metapneumovirus genus based on virological data, sequence homology and gene constellation. Previously, avian pneumovirus was the sole member of this recently assigned genus, hence the provisional name for the newly discovered virus: human metapneumovirus. The clinical symptoms of the children from whom the virus was isolated were similar to those caused by human respiratory syncytial virus infection, ranging from upper respiratory tract disease to severe bronchiolitis and pneumonia. Serological studies showed that by the age of five years, virtually all children in the Netherlands have been exposed to human metapneumovirus and that the virus has been circulating in humans for at least 50 years.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dendritic organization in the neurons of the visual and motor cortices of the cat.

            D SHOLL (1953)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children.

              We sought to determine the role of human metapneumovirus in lower respiratory tract illness in previously healthy infants and children. We tested nasal-wash specimens, obtained over a 25-year period from otherwise healthy children presenting with acute respiratory tract illness, for human metapneumovirus. A viral cause other than human metapneumovirus was determined for 279 of 687 visits for acute lower respiratory tract illness (41 percent) by 463 children in a population of 2009 infants and children prospectively seen from 1976 to 2001. There were 408 visits for lower respiratory tract illness by 321 children for which no cause was identified. Of these 321 children, specimens from 248 were available. Forty-nine of these 248 specimens (20 percent) contained human metapneumovirus RNA or viable virus. Thus, 20 percent of all previously virus-negative lower respiratory tract illnesses were attributable to human metapneumovirus, which means that 12 percent of all lower respiratory tract illnesses in this cohort were most likely due to this virus. The mean age of human metapneumovirus-infected children was 11.6 months, the male:female ratio was 1.8:1, 78 percent of illnesses occurred between December and April, and the hospitalization rate was 2 percent. The virus was associated with bronchiolitis in 59 percent of cases, pneumonia in 8 percent, croup in 18 percent, and an exacerbation of asthma in 14 percent. We also detected human metapneumovirus in 15 percent of samples from 261 patients with upper respiratory tract infection but in only 1 of 86 samples from asymptomatic children. Human metapneumovirus infection is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to that of respiratory syncytial virus. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                28 September 2016
                September 2016
                : 12
                : 9
                : e1005922
                Affiliations
                [1 ]Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
                [2 ]Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
                National Institutes of Health, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: FEN NCM CLM RED.

                • Formal analysis: FEN NCM JC HZ.

                • Funding acquisition: HZ RED.

                • Investigation: FEN NCM JC CLM.

                • Methodology: FEN NCM HZ CLM RED.

                • Project administration: RED.

                • Resources: HZ UJB RED.

                • Supervision: RED.

                • Visualization: FEN NCM JC CLM RED.

                • Writing – original draft: FEN RED.

                • Writing – review & editing: FEN NCM JC HZ UJB CLM RED.

                Author information
                http://orcid.org/0000-0002-6238-6696
                Article
                PPATHOGENS-D-16-00536
                10.1371/journal.ppat.1005922
                5040343
                27683250
                10f16a65-afb2-40d7-8a6c-408dfe13aa55

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 10 March 2016
                : 8 September 2016
                Page count
                Figures: 9, Tables: 0, Pages: 30
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01AI051517
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: 2P20 RR020171
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: Intramural Program
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: P20GM103486
                RED was supported by NIH grants R01AI051517 and 2P20 RR020171 from the National Center for Research Resources. UJB was supported by the Intramural Program of the NIH, National Institute of Allergy and Infectious Diseases. The University of Kentucky Proteomics Core and the Department Imaging Core were partially supported by a COBRE grant from the NIH/NIGMS (P20GM103486). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Contractile Proteins
                Actins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Actins
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Membrane Proteins
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Medicine and Health Sciences
                Pulmonology
                Respiratory Infections
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Antibodies
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Antibodies
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Actin Polymerization
                Research and Analysis Methods
                Specimen Preparation and Treatment
                Staining
                Cell Staining
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article