2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial environments on the accessibility to said proposed receptors. In addition, viral kinetic behavior dependent on the degree of cellular susceptibility was predicted. The latter was observed to be more influenced by the type of proteins and expression level, than by the number of potential proteins associated with the SARS CoV-2 infection. We predict a greater theoretical propensity to susceptibility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, HEK293, A549 and U-251MG. An important relationship was observed between expression levels, protein diffusivity, and thermodynamically favorable interactions between host proteins and the viral spike, suggesting potential sites of early infection other than the lungs. This research is expected to stimulate future quantitative experiments and promote systematic investigation of the effect of crowding presented here.

          Graphical abstract

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cell entry mechanisms of SARS-CoV-2

          Significance A key to curbing SARS-CoV-2 is to understand how it enters cells. SARS-CoV-2 and SARS-CoV both use human ACE2 as entry receptor and human proteases as entry activators. Using biochemical and pseudovirus entry assays and SARS-CoV as a comparison, we have identified key cell entry mechanisms of SARS-CoV-2 that potentially contribute to the immune evasion, cell infectivity, and wide spread of the virus. This study also clarifies conflicting reports from recent studies on cell entry of SARS-CoV-2. Finally, by highlighting the potency and the evasiveness of SARS-CoV-2, the study provides insight into intervention strategies that target its cell entry mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of SARS-CoV-2 entry into cells

            The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process. Entry of SARS-CoV-2 into host cells is mediated by the interaction between the viral spike protein and its receptor angiotensin-converting enzyme 2, followed by virus–cell membrane fusion. Worldwide research efforts have provided a detailed understanding of this process at the structural and cellular levels, enabling successful vaccine development for a rapid response to the COVID-19 pandemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells

              In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.
                Bookmark

                Author and article information

                Journal
                Comput Biol Med
                Comput Biol Med
                Computers in Biology and Medicine
                Elsevier Ltd.
                0010-4825
                1879-0534
                20 January 2022
                March 2022
                20 January 2022
                : 142
                : 105245
                Affiliations
                [a ]Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001, Maracaibo, Venezuela
                [b ]Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001, Maracaibo, Venezuela
                [c ]Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001, Maracaibo, Venezuela
                [d ]Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
                [e ]Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
                [f ]Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
                [g ]Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
                [h ]Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Natuales, Universidad del Rosario, Bogotá, Colombia
                [i ]Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Qutio, Ecuador
                Author notes
                []Corresponding author. LUZ-FEC, LGBM, IVIC- CEBA- LPV, Maracaibo, 4001, Zulia, Venezuela.
                [∗∗ ]Corresponding author. Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, Maracaibo, Venezuela.
                Article
                S0010-4825(22)00037-3 105245
                10.1016/j.compbiomed.2022.105245
                8770263
                35077937
                10522e2e-dfc8-48ce-9f42-5b467f385140
                © 2022 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 14 December 2021
                : 7 January 2022
                : 16 January 2022
                Categories
                Article

                docking,cell lines,macromolecular crowding,viral spike,cell susceptibility

                Comments

                Comment on this article