0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intratumoral Treatment of Melanoma Tumors with Large Surface Area Microparticle Paclitaxel and Synergy with Immune Checkpoint Inhibition

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of intratumoral (IT) large surface area microparticle paclitaxel (LSAM-PTX) alone and in combination with systemic administration of the programmed cell death protein antibody (anti-mPD-1) were evaluated in a syngeneic murine model of melanoma. Groups of mice with subcutaneously implanted Clone M3 (Cloudman S91) tumors were treated with single and combination therapies. Tumor volume (TV) measurements, body weights, and clinical observations were followed in-life. At end of study, tumor-site tissues were collected, measured, and processed for flow cytometry along with blood and lymph nodes. The combination of LSAM-PTX + anti-mPD-1 resulted in an antitumoral response, which produced a significant decrease in TV compared to control animals. TV decreases also occurred in the LSAM-PTX and anti-mPD-1 groups. Flow cytometry analysis found increases in granulocytes and M2 macrophages and decreases in dendritic cells (DC) and monocytic myeloid-derived suppressor cells (M-MDSC) in tumor-site tissues. Increases in granulocytes and decreases in CD4+ T cells, macrophages, and M1 macrophages were found in the blood of animals administered the combination treatment. Increases in natural killer (NK) cells were found in lymph node tissue in the combination treatment group. These findings suggest that IT LSAM-PTX may provide benefit in the local treatment of melanomas and may synergize with systemic anti-PD-1 therapy, leading to additional tumoricidal outcomes without added systemic toxicity.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Oncology meets immunology: the cancer-immunity cycle.

          The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma.

            Talimogene laherparepvec (T-VEC) is a herpes simplex virus type 1-derived oncolytic immunotherapy designed to selectively replicate within tumors and produce granulocyte macrophage colony-stimulating factor (GM-CSF) to enhance systemic antitumor immune responses. T-VEC was compared with GM-CSF in patients with unresected stage IIIB to IV melanoma in a randomized open-label phase III trial.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect

              Radiotherapy has been used for over hundred years as a local tumor treatment. The occurrence of systemic anti-tumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                22 January 2024
                2024
                : 19
                : 689-697
                Affiliations
                [1 ]US Biotest, Inc , San Luis Obispo, CA, USA
                [2 ]Nanology, LLC , Fort Worth, TX, USA
                Author notes
                Correspondence: Gere S diZerega, US Biotest, Inc , 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA, Tel +01 805 595 1300, Email Gere.diZerega@usbiotest.com
                Article
                449975
                10.2147/IJN.S449975
                10812144
                38283196
                1029d252-d310-4339-a495-3d9e42c76c67
                © 2024 Maulhardt et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 15 November 2023
                : 16 January 2024
                Page count
                Figures: 3, Tables: 2, References: 40, Pages: 9
                Categories
                Short Report

                Molecular medicine
                clone m-3,nanopac,combinatorial immunotherapy,pd-1
                Molecular medicine
                clone m-3, nanopac, combinatorial immunotherapy, pd-1

                Comments

                Comment on this article